Concept:
There are different ways to represent the concentration of a solution:
Molarity: It is concentration of solution expressed as no. of moles per liter solution.
\({\rm{Molarity}} = \frac{{{\rm{No}}.{\rm{\;of\;moles}}}}{{{\rm{volume\;of\;solution\;in\;liter}}}}\)
Where, \({\rm{No}}.{\rm{\;of\;moles}} = \frac{{{\rm{Given\;weight}}}}{{{\rm{Molecular\;weight}}}}\)
Normality: It is concentration of solution expressed as no. of gram equivalents per liter solution.
\({\rm{Normality}} = \frac{{{\rm{Gram\;equivalents}}}}{{{\rm{volume\;of\;solution\;in\;liter}}}}\)
Where, \({\rm{No}}.{\rm{\;of\;gram\;equivalents}} = \frac{{{\rm{Given\;weight}}}}{{{\rm{Equivalent\;weight}}}}\)
\({\rm{And\;equivalent\;weight}} = \frac{{{\rm{Molecular\;weight}}}}{{{\rm{Valency}}}}\)
Calculation:
Molecular weight of H2SO4 = 2 × 1 + 32 + 16 × 4 = 98 grams
No. of moles present in the original solution = 0.1 × 0.8 = 0.08 moles
Weight of 0.15 moles of H2SO4 = 0.08 × 98 = 7.84 grams
Equivalent weight of H2SO4 = 98/2 = 49 grams
No. of gram equivalent of H2SO4 = \(\frac{{7.84}}{{49}}\) = 0.16 gram-equivalents
Final volume = 800 + 200 = 1000 ml
Normality of new solution = 0.16/1 = 0.16 N