Concept:
As per Terzaghi’s bearing capacity equation –
qu = cNc + qNq + \(\frac{1}{2}{\rm{B\gamma }}{{\rm{N}}_{\rm{\gamma }}}\)
where,
Nc, Nq and Nγ are the dimensionless bearing capacity factors that are a function of ∅ only.
The above formula is derived for strip footing and some modifications are carried out for various shapes of footing.
Modifications in Terzaghi’s Bearing capacity equation:-
a) Rectangular footing :
\({{\rm{q}}_{{\rm{nu}}}}{\rm{\;}} = {\rm{\;}}\left( {1 + 0.3\frac{{\rm{B}}}{{\rm{L}}}} \right){\rm{C}}{{\rm{N}}_{\rm{C}}} + {\rm{q}}\left( {{{\rm{N}}_{\rm{q}}} - 1} \right) + \left( {1 - 0.2\frac{{\rm{B}}}{{\rm{L}}}} \right)0.5{\rm{B\gamma }}{{\rm{N}}_{\rm{\gamma }}}\)
b) Square footing:
qnu = 1.3 CNc + q(Nq – 1) + 0.8 × 0.5 BγNγ
qnu = 1.3 CNc + q(Nq -1) + 0.4 BγNγ
c) Circular footing :
qnu = 1.3 cNc + q(Nq - 1) + 0.6 × 0.5 BγNγ
qnu = 1.3CNc + q(Nq -1) + 0.3BγNγ
For ϕ < 29°, Local shear failure takes place.
\({q_{safe}} = \frac{{{q_{nv}}}}{{FOS}} + {\gamma _t}{D_f}\)
For local shear failure (ϕ < 29°)
\({C_m} = \frac{2}{3}C\)
\(\tan {\phi _m} = \frac{2}{3}\tan \phi\)
Using ϕm - NC’, Nq’, Nγ’ would be calculated.
Calculation:
\(\frac{{{D_f}}}{B} \le 1 \Rightarrow \) Shallow footing
Here, Df = 1.5 m, B = 3m
\(\therefore \frac{{{D_f}}}{B} = \frac{{1.5}}{3} = 0.5 < 1 \Rightarrow \) Shallow footing
ϕ = 24° < 29° ⇒ Local shear failure will govern the design.
\(\therefore {C_m} = \frac{2}{3} \times C = \frac{2}{3} \times 12 = 8\;kN/{m^2}\)
\(\tan {\phi _m} = \frac{2}{3}\tan \phi \Rightarrow {\phi _m} = 16.53^\circ \)
Thus, NC, Nq and Nγ are corresponding to the 16.53°.
As per Terzaghi, for square footing
qnu = 1.3 CNC + q(Nq – 1) + 0.4 Bγ Nγ = 1.3 × Cm × NC + γt Df × (Nq – 1) + 0.4 Bγ Nγ
= 1.3 × 8 × 12.3 + 16 × 1.5 × (8.2 - 1) + 0.4 × 3 × 16 × 2.4 = 346.8 kN/m2
\(\therefore {q_s} = \frac{{{q_{nu}}}}{{FOS}} + {\gamma _t}{D_f}\)
\(\Rightarrow {q_s} = \frac{{346.8}}{{2.5}} + 16 \times 1.5\) = 162.72 kN/m2
∴ Gross safe load = 162.72 × Area of footing = 162.72 × 9 = 1464.48 kN