Concept:
Force exerted on the jet or nozzle = Rate of change in momentum
\({\rm{Force\;}}\left( {\rm{F}} \right) = {\rm{\;}}\frac{{{\rm{Final\;Momentum}} - {\rm{Initial\;Momentum}}}}{{{\rm{Time}}}}\)
\(\therefore {\rm{F}} = \frac{{{\rm{Mass\;}} \times {\rm{Final\;Velocity}} - {\rm{Mass\;}} \times {\rm{Initial\;Velocity}}}}{{{\rm{Time}}}} = \frac{{{\rm{Mass}}}}{{{\rm{Time}}}} \times \left( {{\rm{Final\;Velocity}} - {\rm{Initial\;Velocity}}} \right)\)
Now, consider two points. Point 1 is being inside the nozzle and point 2 is being on the tip of the nozzle where the water is being discharged in the atmosphere. Applying Bernoulli’s equation we get,
\(\frac{{{{\rm{P}}_1}}}{{{\rm{\rho g}}}} + \frac{{{\rm{V}}_1^2}}{{2{\rm{g}}}} + {{\rm{z}}_1} = \frac{{{{\rm{P}}_2}}}{{{\rm{\rho g}}}} + \frac{{{\rm{V}}_2^2}}{{2{\rm{g}}}} + {{\rm{z}}_2}{\rm{\;}}\)
Now, z1 = z2 and P2 = 0 as atmospheric pressure.
\(\therefore \frac{{{\rm{V}}_2^2}}{{2{\rm{g}}}} = \frac{{{{\rm{P}}_1}}}{{{\rm{\rho g}}}} + \frac{{{\rm{V}}_1^2}}{{2{\rm{g}}}}\)
∴ V2 > V1 as P1 is positive pressure.
∴ Force exerted on the jet or nozzle \(,{\rm{F}} = \frac{{{\rm{Mass}}}}{{{\rm{Time}}}} \times \left( {{\rm{Final\;Velocity}} - {\rm{Initial\;Velocity}}} \right)\)
\({\rm{Force\;}}\left( {\rm{F}} \right) = \frac{{{\rm{Mass}}}}{{{\rm{Time}}}} \times \left( {{{\rm{V}}_2} - {{\rm{V}}_1}} \right)\)
∴ F > 0 as V2 > V1
∴ The force is positive means it is tensile in nature and the nozzle is in tension.