Concept:
If gravitational and inertial force are me only important forces, then the Frouds number must be the same in the model and prototype. Thus
\(\frac{{{V_m}}}{{\sqrt {g{L_m}} }} = \frac{{{V_p}}}{{\sqrt {g{L_p}} }}\)
Scale Ratio for length: \(L_r=\frac{L_p}{L_m}\)
From Froude Model Law:
\(\frac{{{V_m}}}{{\sqrt {g{L_m}} }} = \frac{{{V_p}}}{{\sqrt {g{L_p}} }} \Rightarrow \frac{{{V_m}}}{{\sqrt {{L_m}} }} = \frac{{{V_p}}}{{\sqrt {{L_p}} }}=\frac{V_p}{V_m}=\sqrt {\frac{L_p}{L_m}}=\sqrt {L_r}\)
Scale Ratio for Time: Time = Length/Velocity
\({T_r} = \frac{{{T_p}}}{{{T_m}}} = \frac{{{{\left( {\frac{L}{V}} \right)}_P}}}{{{{\left( {\frac{L}{V}} \right)}_m}}} = \frac{{{L_p}}}{{{L_m}}}.\frac{{{V_m}}}{{{V_p}}} = {L_r}.\frac{1}{{\sqrt {{L_r}} }} = \sqrt {{L_r}} \)
Scale ratio for Discharge:
Q = A × V = L2 × L/T = L3/T
\({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} = \frac{{{{\left( {\frac{{{L^3}}}{T}} \right)}_P}}}{{{{\left( {\frac{{{L^3}}}{T}} \right)}_m}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^3}.\frac{{{T_m}}}{{{T_p}}} = {L_r}^3.\frac{1}{{\sqrt {{L_r}} }} = {L_r}^{2.5}\)
Or
\({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} = \frac{{{{\left( {A \times V} \right)}_P}}}{{{{\left( {A \times V} \right)}_m}}} = \frac{{{A_P}}}{{{A_m}}}.\frac{{{V_P}}}{{{V_m}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^2}.\sqrt {\frac{{{L_P}}}{{{L_m}}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^{2.5}} = {L_r}^{2.5}\)
Calculation:
As here only Length scale ratio and discharge is give so we will use Froude Model Law.
Qr = Lr2.5 = 202.5 = 1788.85
\({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} \Rightarrow {Q_m} = \frac{{{Q_p}}}{{{Q_r}}} = \frac{4}{{1788.85}} = 0.0022\,{{\rm{m}}^{\rm{3}}}{\rm{/s}}\)