Self Studies

Fluid Mechanics Test 5

Result Self Studies

Fluid Mechanics Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What flow rate in m3/s is needed using a 20:1 scale model of a dam over which 4 m3/s of water flows?
    Solution

    Concept:

    If gravitational and inertial force are me only important forces, then the Frouds number must be the same in the model and prototype. Thus

    \(\frac{{{V_m}}}{{\sqrt {g{L_m}} }} = \frac{{{V_p}}}{{\sqrt {g{L_p}} }}\)

    Scale Ratio for length: \(L_r=\frac{L_p}{L_m}\)

    From Froude Model Law:

    \(\frac{{{V_m}}}{{\sqrt {g{L_m}} }} = \frac{{{V_p}}}{{\sqrt {g{L_p}} }} \Rightarrow \frac{{{V_m}}}{{\sqrt {{L_m}} }} = \frac{{{V_p}}}{{\sqrt {{L_p}} }}=\frac{V_p}{V_m}=\sqrt {\frac{L_p}{L_m}}=\sqrt {L_r}\)

    Scale Ratio for Time: Time = Length/Velocity

    \({T_r} = \frac{{{T_p}}}{{{T_m}}} = \frac{{{{\left( {\frac{L}{V}} \right)}_P}}}{{{{\left( {\frac{L}{V}} \right)}_m}}} = \frac{{{L_p}}}{{{L_m}}}.\frac{{{V_m}}}{{{V_p}}} = {L_r}.\frac{1}{{\sqrt {{L_r}} }} = \sqrt {{L_r}} \)

    Scale ratio for Discharge:

    Q = A × V = L2 × L/T = L3/T

    \({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} = \frac{{{{\left( {\frac{{{L^3}}}{T}} \right)}_P}}}{{{{\left( {\frac{{{L^3}}}{T}} \right)}_m}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^3}.\frac{{{T_m}}}{{{T_p}}} = {L_r}^3.\frac{1}{{\sqrt {{L_r}} }} = {L_r}^{2.5}\)

    Or

    \({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} = \frac{{{{\left( {A \times V} \right)}_P}}}{{{{\left( {A \times V} \right)}_m}}} = \frac{{{A_P}}}{{{A_m}}}.\frac{{{V_P}}}{{{V_m}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^2}.\sqrt {\frac{{{L_P}}}{{{L_m}}}} = {\left( {\frac{{{L_p}}}{{{L_m}}}} \right)^{2.5}} = {L_r}^{2.5}\)

    Calculation:

    As here only Length scale ratio and discharge is give so we will use Froude Model Law.

    Qr = Lr2.5 = 202.5 = 1788.85

    \({Q_r} = \frac{{{Q_p}}}{{{Q_m}}} \Rightarrow {Q_m} = \frac{{{Q_p}}}{{{Q_r}}} = \frac{4}{{1788.85}} = 0.0022\,{{\rm{m}}^{\rm{3}}}{\rm{/s}}\)

  • Question 2
    1 / -0
    If δ1 and δ2 are the laminar boundary layer thicknesses over a flat plate at a point, distant x from the leading edge when the Reynolds number of the flow are 100 and 400, respectively, then the ratio δ12 will be
    Solution

    Concept:

    For Laminar Boundary layer:

    \(\frac{{\rm{\delta }}}{{\rm{X}}} = \frac{{\rm{K}}}{{\sqrt {{\rm{R}}{{\rm{e}}_{\rm{X}}}} }}\)

    Where δ is the boundary layer thickness.

    Rex is Reynolds Number at a distance X from the leading edge.

    K is any constant; generally it is equal to 5.

    Now for Given X;

    \(\delta \propto \frac{1}{{\sqrt {R{e_X}} }}\)

    Calculation:

    Given

    Re x1 = 200 and Re x2 = 400

    \(\frac{{{\delta _1}}}{{{\delta _2}}} = \sqrt {\frac{{R{e_{X2}}}}{{R{e_{X1}}}}} \)

    \(\frac{{{\delta _1}}}{{{\delta _2}}} = \sqrt {\frac{{400}}{{100}}} = 2.0\)

  • Question 3
    1 / -0

    The velocity distribution in the boundary layer is given as \(\frac{u}{U}=\frac{y}{\delta }\). The dimensionless-profile shape factor is

    Solution

    Dimensionless profile shape factor (H) = Displacement thickness/Momentum thickness = δ*/θ

    \({{\delta }^{*}}=\mathop{\int }_{0}^{\delta }\left( 1-\frac{u}{U} \right)dy,\theta =\mathop{\int }_{0}^{\delta }\frac{u}{U}\left( 1-\frac{u}{U} \right)dy\)

    \(\frac{u}{U}=\frac{y}{\delta }\)

    \({{\delta }^{*}}=\mathop{\int }_{0}^{\delta }\left( 1-\frac{y}{\delta } \right)dy=\left\{ y-\frac{{{y}^{2}}}{2\delta } \right\}_{0}^{\delta }=\delta -\frac{{{\delta }^{2}}}{2\delta }=\frac{\delta }{2}\)

    \(\theta =\mathop{\int }_{0}^{\delta }\frac{u}{U}\left( 1-\frac{u}{U} \right)dy=\mathop{\int }_{0}^{\delta }\frac{y}{\delta }\left( 1-\frac{y}{\delta } \right)dy\)

    \(\theta =\mathop{\int }_{0}^{\delta }\left( \frac{y}{\delta }-\frac{{{y}^{2}}}{{{\delta }^{2}}} \right)dy\)

    \(=\left\{ \frac{{{y}^{2}}}{2\delta }-\frac{{{y}^{3}}}{3{{\delta }^{2}}} \right\}_{0}^{\delta }\)

    \(\Rightarrow \frac{\delta }{2}-\frac{\delta }{3}=\frac{\delta }{6}\)

    \(H=\frac{{{\delta }^{*}}}{\theta }=\frac{\frac{\delta }{2}}{\frac{\delta }{6}}=3\)

    So, shape factor (H) = 3
  • Question 4
    1 / -0

    A pipe of diameter 1.8 m is required to transport an oil of relative density 0.8 and viscosity 0.04 poise at the rate of 4 m3/s. Tests were conducted on a 20 cm diameter pipe using water. The discharge (litres/s) through the model is _____. (Correct up to 2 decimals)

    Take viscosity of water = 0.01 poise, density = 1000 kg/m3
    Solution

    Concept:

    Specific Gravity or Relative Density: The ratio of the density of the fluid to the density of water—usually 1000 kg/m3 at a standard condition—is defined as Specific Gravity or Relative Density of fluids

    ∴ The density of fluid = Relative Density × Density of water

    Poise = 0.1 Ns/m= 0.1 kg/ms

    Calculation:

    Given data,

    RD = 0.8 ⇒ ρ = 0.8 × 1000 = 800 kg/m3

    Prototype

    Model

    DP = 1.8 m

    Dm = 0.2 m

    ρP = 800 kg/m3

    ρm = 1000 kg/m3

    μP = 0.004 kg/ms

    μm = 0.001 kg/ms

    QP = 4 m3/s

    Qm = ?

     

    (Re)P = (Re)m

    \({{\left( \frac{ρ VD}{\mu } \right)}_{P}}={{\left( \frac{ρ VD}{\mu } \right)}_{m}}\)     ...(1)

    \(\frac{{{\rho _m}}}{{{\rho _P}}}.\frac{{{V_m}}}{{{V_P}}}.\frac{{{D_m}}}{{{D_P}}}.\frac{{{\mu _P}}}{{{\mu _m}}} = 1\)

    \(\frac{{1000}}{{800}} × \frac{{{V_m}}}{{{V_P}}} × \frac{{0.2}}{{1.8}} × \frac{{0.004}}{{0.001}} = 1\)

    \(\frac{{{V_m}}}{{{V_P}}} = 1.8\)

    \(\frac{{{Q_m}}}{{{Q_P}}} = \frac{{{A_m}{V_m}}}{{{A_P}{V_P}}} = {\left( {\frac{{{D_m}}}{{{D_P}}}} \right)^2} × \frac{{{V_m}}}{{{V_P}}}\)

    \(\frac{{{Q_m}}}{{{Q_P}}} = {\left( {\frac{{0.2}}{{1.8}}} \right)^2} × 1.8 = 0.0222\)

    Qm = 0.0222 × Q= 0.0222 × 4 = 0.08888 m3/s

    1 litre = 1000 cm3 = 10-3 m3

    ∴ 1 m3/s = 1000 litre/s

    Qm = 0.08889 m3/s

    ∴ Q= 88.89 litres/s

  • Question 5
    1 / -0
    Oil (kinematic viscosity, νoil = 1.0 × 10-5 m2/s) flows through a pipe of 0.5 m diameter with a velocity of 10 m/s. Water (kinematic viscosity, vw = 0.89 × 10-6 m2/s) is flowing through a model pipe of diameter 20 mm. For satisfying the dynamic similarity, the velocity of water (in m/s) is _______.
    Solution

    Concept:

    For pipe flow, the dynamic similarity will be obtained if the Reynolds number in the model and prototype are equal.

    (Re)Model = (Re)Prototype

    \(\frac{{{\rho _m}{V_m}{D_m}}}{{{\mu _m}}} = \frac{{{\rho _p}{V_p}{D_p}}}{{{\mu _p}}}\)

    \(\frac{{{V_m}{D_m}}}{{{\nu _m}}} = \frac{{{V_p}{D_p}}}{{{\nu _p}}}\)

    Calculation:

    Given: νoil = 1.0 × 10-5 m2/s, vw = 0.89 × 10-6 m2/s, Doil = 0.5 m, Dw = 20 mm = 0.02 m, Voil = 10 m/s, Vw = ?

    \({\left( {\frac{{VD}}{v}} \right)_P} = {\left( {\frac{{VD}}{v}} \right)_m}\)

    \(\frac{{10 \times 0.5}}{{1.0 \times {{10}^{ - 5}}}} = \frac{{{V_w} \times 0.02}}{{0.89 \times {{10}^{ - 6}}}}\)

    VWater = 22.25 m/s
  • Question 6
    1 / -0
    A smooth flat plate of total length 2 m is in parallel flow stream of water. The water has uniform free stream velocity of 1 m/s parallel to plate. The critical Reynolds number for a flat plate is 500000. Assume density of water is 1000 kg/m3 and dynamic viscosity of water 1 centipoises. What is the maximum distance measured (in m, up to two decimal places) from leading edge of plate, up-to which the boundary layer formed to be laminar?
    Solution

    Concept:

    The Reynolds number for flow over plate can be given as:

    \({R_e} = \frac{{\rho UX}}{\mu }\)

    Where

    X is the distance from leading edge.

    U is the free mean velocity.

    μ is the dynamic viscosity of fluid flowing.

    ρ is the density of fluid flowing.

    If Reynolds number is less than or equal to critical Reynold’s number than boundary layer formed over flat plate is laminar i.e.Re ≤ ReCr­

    Calculation:

    Given:

    U = 1 m/s ; ρ = 1000 kg/m3 ; μ = 1 centipoise = 10-3 N s/m2

    Re cr = 5 × 105

    Let ‘x’ is the distance from leading edge up to which Boundary layer formed is laminar,

    Now,

    Rex ≤ Re cr

    \(\frac{{\rho Ux}}{\mu } \le 5 \times {10^5}\)

    \(\frac{{{{10}^3} \times 1 \times x}}{{{{10}^{ - 3}}}} \le 5 \times {10^5}\)

    x ≤ 0.5 m

    ∴ The maximum distance from leading edge of the plate up to which boundary layer is laminar is 0.50 m.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now