Concept:
The bending strength or the plastic moment capacity of a laterally unsupported beam is given by:
Md = βb Zp fbd
Where
βb = 1 → for plastic and concept section
\(= \frac{{{{\rm{z}}_{\rm{e}}}}}{{{{\rm{z}}_{\rm{p}}}}} \to {\rm{for\;semi}} - {\rm{compact\;section}}.\)
Ze = Elastic section modulus
Zp = Plastic section modulus
fbd = design bending compressive strength
\(= {{\rm{X}}_{{\rm{LT}}}}\frac{{{{\rm{f}}_{\rm{y}}}}}{{{{\rm{y}}_{{\rm{mo}}}}}}\)
ymo = Partial safety factor for material = 1.1
XLT = bending stress reduction factor to account for lateral torsional buckling
XLT ≤ 1.0
Calculation:
For a semi-compact section of a laterally unsupported steel bean plastic moment capacity
\({{\rm{M}}_{\rm{d}}} = \frac{{{\rm{ze}}}}{{{\rm{zp}}}} \times {\rm{zp}} \times {{\rm{X}}_{{\rm{LT}}}}\frac{{{\rm{fy}}}}{{{{\rm{y}}_{{\rm{mo}}}}}}{\rm{\;}}\)
XLT = 1.0
γmo = 1.1
fy = 250 Mpa for grade fe 410
\(\therefore {\rm{\;Md\;}} = {\rm{\;}}200{\rm{\;}} \times {\rm{\;}}{10^{ - 5}}{{\rm{m}}^3} \times {\rm{\;}}1{\rm{\;}} \times \frac{{250}}{{1.1}}{\rm{N}}/{\rm{m}}{{\rm{m}}^2}\)
\({\rm{Md\;}} = {\rm{\;}}200{\rm{\;}} \times {\rm{\;}}{10^{ - 5}}{{\rm{m}}^3}{\rm{\;}} \times \frac{{250}}{{1.1}} \times \frac{1}{{{{10}^{ - 6}}}} \times {10^{ - 3}}{\rm{KN}}/{{\rm{m}}^2}\) = 454.54 kNm