Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    The value of the integral \(\displaystyle\int_0^{2\pi}\left(\dfrac{3}{9+\sin^2 \theta }\right)d\theta \) is
    Solution

    \(\mathop \smallint \limits_0^{2a} f\left( x \right)dx = \left\{ {\begin{array}{*{20}{c}}{2\mathop \smallint \limits_0^a f\left( x \right)dx,\;\;f\left( {2a - x} \right) = f\left( x \right)}\\{0,\;\;f\left( {2a - x} \right) = - f\left( x \right)}\end{array}} \right.\)

    From the property of integration as mentioned above, the given integral can be reduced to

    \( = 2\mathop \smallint \limits_0^\pi \left( {\frac{3}{{9 + {{\sin }^2}\theta }}} \right)d\theta \)

    \( = 4\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{3}{{9 + {{\sin }^2}\theta }}} \right)d\theta \)

    \( = 4\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{3}{{9 + \frac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }}{{\sin }^2}\theta }}} \right)d\theta \)

    \( = 12\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{{{\sec }^2}\theta }}{{9{{\sec }^2}\theta + {{\tan }^2}\theta }}} \right)d\theta \)

    \( = 12\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{{{\sec }^2}\theta }}{{9\left( {1 + {{\tan }^2}\theta } \right) + {{\tan }^2}\theta }}} \right)d\theta \)

    \( = 12\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{{{\sec }^2}\theta }}{{9 + 10{{\tan }^2}\theta }}} \right)d\theta \)

    Put tan θ = t

    ⇒ sec2θ dθ = dt

    \( = 12\mathop \smallint \limits_0^\infty \left( {\frac{1}{{9 + 10{t^2}}}} \right)dt\)

    \( = \frac{{12}}{{10}}\mathop \smallint \limits_0^\infty \left( {\frac{1}{{\frac{9}{{10}} + {t^2}}}} \right)dt\)

    \( = \frac{{12}}{{10}} \times \frac{1}{{\frac{3}{{\sqrt {10} }}}}\left[ {{{\tan }^{ - 1}}\left( {\frac{t}{{\frac{3}{{\sqrt {10} }}}}} \right)} \right]_0^\infty \)

    \( = \frac{4}{{\sqrt {10} }}\left[ {\frac{\pi }{2} - 0} \right] = \frac{{2\pi }}{{\sqrt {10} }}\)

  • Question 2
    2 / -0.33

    A student is solving the linear algebra problem. He has calculated the eigenvalues of matrix M as 4, 16, and 64.  If he also wants to calculate the 100 × det(M-1)T where det(M-1)Tis the determinant of det(M-1)then the value of 2000 × det (M-1)T is______.(up to 2 decimal places)

    Solution

    Concept:

    The determinant of a matrix is the product of its eigenvalues.

    The determinant of a matrix is same as its transpose.

    The determinant of a matrix is reciprocal to its inverse.

    Calculation:

    Eigenvalues of matrix A are 4, 16 and 64.

    Determinant of matrix A = 4 × 16 × 64 = 4096

    Determinant of inverse of A = det (A-1) = \(\frac{1}{{{\rm{det}}\left( A \right)}} = \;\frac{1}{4086} \)

    det (A-1) = det (A-1)T = \(\frac{1}{4086}\)

    2000 ×(M-1)T = 0.488

  • Question 3
    2 / -0.33
    A class of 30 students occupy a classroom containing 5 rows of seats, with 8 seats in each row. If the student seat themselves at random, the probability that the sixth seat in the fifth row will be empty is
    Solution

    Data:

    No. of Students in class = 30 students

    30 students have to sit on 40 seats

    Calculation:

    Total seats = (5 row) × (8 seats/row) = 40 seats

    Total no. of ways = 40C30

    For 6th seat of 5th row to be empty, all 30 students have to sit on remaining 39 seats.

    No. of favourable ways = 39C30

    Probability (sixth seat in the fifth row will be empty) =

    \(= \frac{{{\rm{NO}}.{\rm{\;of\;favourable\;ways}}}}{{{\rm{Total\;no}}.{\rm{\;of\;ways}}}}\)

    39C30 ÷ 40C30

    = ¼ 

  • Question 4
    2 / -0.33

    Consider a sentence consist of eight words: "Do not count your chickens before they hatch" placed on the floor written in different pieces of paper. These eight pieces of paper are kept in a bag. One of the pieces is drawn at random from the bag. What is the expected length of the word drawn?

    NOTE:
    Answer upto 2 decimal places

    Solution

    Concept:

    Expected length E(X) = ∑ (X × P(X))

    where X is random variable denoting length of word drawn

    Explanation:

    word

    Length

    Do

    2

    not

    3

    count

    5

    your

    4

    chickens

    8

    before

    6

    they

    4

    hatch

    5

     

    Each of the nine words has equal probability.

    \(\frac{1}{8}\left( {2 + 3 + 5 + 4 + 8 + 6 + 4 + 5 } \right) = \frac{{37}}{8} = 4.625\)

    Hence 4.62 is the expected length.

  • Question 5
    2 / -0.33
    Consider the function f(x) = x + ln x and f is differentiable on (1, e) and f(x) is continuous on [1, e]. Determine the c value using Lagrange’s Mean value theorem.
    Solution

    Given:  f(x) = x + ln x, a = 1, b = e

    f’(x) = 1 + \(\frac{1}{{{\rm{x\;}}}}\)

    Lagrange’s Mean Value Theorem: If a function f(x) is

    • Continuous in closed interval [a, b] and
    • Differentiable in open interval (a, b), then


    There exist at least one c value of x lying in the open interval (a, b) such that f’(c) = \(\frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( a \right)}}{{{\rm{b}} - {\rm{a}}}}\)

    f’(c) = \(\frac{{{\rm{f}}\left( {\rm{b}} \right) - {\rm{f}}\left( a \right)}}{{{\rm{b}} - {\rm{a}}}}\; = \;\frac{{{\rm{f}}\left( {\rm{e}} \right) - {\rm{f}}\left( 1 \right)}}{{{\rm{e}} - 1}}\)

    f’(c) = \(\frac{{{\rm{e\;}} + {\rm{\;}}ln{\rm{\;e}} - (1 + \ln 1){\rm{\;}}}}{{{\rm{e}} - 1}}\) 

    = \(\frac{{{\rm{e\;}} + {\rm{\;}}1 - 1 + 0{\rm{\;}}}}{{{\rm{e}} - 1}}\) 

    \(\frac{{{\rm{e\;}}}}{{{\rm{e}} - 1}}\)

    f’(c) = \(\frac{{{\rm{e\;}}}}{{{\rm{e}} - 1}}\)

    1 + \(\frac{1}{{\rm{c}}}\) = \(\frac{{{\rm{e\;}}}}{{{\rm{e}} - 1}}\)

    \(\frac{1}{{\rm{c}}}\) = \(\frac{{{\rm{e\;}}}}{{{\rm{e}} - 1}} - 1\)

    \(\frac{1}{{\rm{c}}}\) = \(\frac{{{\rm{e}} - {\rm{e\;}} + 1{\rm{\;}}}}{{{\rm{e}} - 1}}\)

    c = e – 1

  • Question 6
    2 / -0.33

    Each of the nine words in the sentence”. The quick brown fox jumps over the lazy dog” is written on a separate piece of paper. These nine pieces of paper are kept in a box. One of the pieces is drawn at random from the box. The expected length of the word drawn is ______. (The answer should be rounded to one decimal place.)

    Solution

    Concept:

    Expected length E(X) = ∑ (X × P(X))

    where X is random variable denoting length of word drawn

    Explanation:

    word

    Length

    The

    3

    quick

    5

    brown

    5

    fox

    3

    jumps

    5

    over

    4

    the

    3

    lazy

    4

    dog

    3

     

    Each of the nine words has equal probability.

    \(\frac{1}{9}\left( {3 + 5 + 5 + 3 + 5 + 4 + 3 + 4 + 3} \right) = \frac{{35}}{9} = 3.9\) 

    Hence 3.9 is the expected length.

  • Question 7
    2 / -0.33

    Given simultaneous equations have infinitely many solution.

    2x + 3y + z = 0

    4x + 6y + 6z = 0

    8x + 12ay + 2z = 0

    Which of the following is true for a?

    Solution

    Since given system of equations is homogeneous and has infinitely many solutions.

    Therefore, given matrix is consistent and determinant of the coefficient matrix should be equal to 0

    \(\left| {\begin{array}{*{20}{c}} 2&3&1\\ 4&6&6\\ 8&{12a}&2 \end{array}} \right| = 0\)

    \(2 \times \left( {12\; - 72a} \right) - 3 \times \left( {8 - 48} \right) + 1\left( {48a - 48} \right) = 0\)

    24 – 144a – 24 + 144 + 48a – 48 = 0

    - 96a + 96 = 0

    ∴ a = 1
  • Question 8
    2 / -0.33

    The probability density function of a random variable function y has the following probability function:

    y

    0

    1

    2

    3

    4

    5

    6

    7

    p(y)

    0

    m

    m

    3m

    3m

    m2

    4m2

    5m2 + m

     

    find p(y ≥ 5)?

    Solution

    Since y is a random variable:

    \(\mathop \sum \limits_{i = 0}^7 p\left( {{y_i}} \right) = 1\)

    \(= 0 + m + m + 3m + 3m + {m^2} + 4{m^2} + 5{m^2} + m = 1\)

    \(10{m^2} + 9m - \;1 = 0\)

    \(\left( {m + 1} \right)\left( {10m - \;1} \right) = 0\)

    \(\therefore m = - 1\;\;or\;m = \frac{1}{{10}}\)

    since probability cannot be in negative

    \(\therefore \;m \ne \; - 1\)

    \(p\left( {y \ge 5} \right) = p\left( 5 \right) + p\left( 6 \right) + p\left( 7 \right) \)

    \(\therefore p\left( {y \ge 5} \right)\; = \;{m^2} + 4{m^2} + 5{m^2} + m\;\;\)

    \(put\;m = \frac{1}{{10}}\)

    \(\therefore p\left( {y \ge 5} \right) = \frac{1}{5}\)

  • Question 9
    2 / -0.33

    Two events A and B are such that P(A) = 0.5, P(B) = 0.3 and P(A ∩ B) = 0.1. Which of the following is/are true?

    Solution

    P(A) = 0.5, P(B) = 0.3 and P(A ∩ B) = 0.1

    P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.7

    \(P\left( {A{\rm{|}}B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{1}{3}\)

    \(P\left( {B{\rm{|}}A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{1}{5}\)

    \(P\left( {A{\rm{|}}A \cup B} \right) = \frac{{P\left( A \right)}}{{{\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right)}} = \frac{5}{7}\)

    P(A|A ∩ B) = P(A ∩ B)/P(A ∩ B) = 1

    \(P\left( {A \cap B{\rm{|}}A \cup B} \right) = \frac{{P\left( {A \cap B} \right)}}{{{\rm{P}}({\rm{A}} \cup {\rm{B}}}} = \frac{1}{7}\)

  • Question 10
    2 / -0.33
    If a random variable X has a Poisson distribution with mean 5, then the expectation E[(X + 2)2] equals ______.
    Solution

    Concept:

    In case of Poisson distribution, mean and variance are same.

    Calculation:

    Given, mean = 5

    E[(X + 2)2] = E [X2 + 4X + 4] = E[X2] + E[4X] + E[4]

    Variance = E[X2] - (E[X])2

    As, mean = variance = 5

    Mean = E[X]

    5 = E[X2] -  (5)2

    5 = E[X2] - 25

    E[X2] = 30

    So, E[(X+2)2] = 30 + 4 × 5 + 4 = 54
  • Question 11
    2 / -0.33

    Consider the matrix  \(M =\left[ {\begin{array}{*{20}{c}} 5\\ 4 \end{array}\begin{array}{*{20}{c}} { - 1}\\ 1 \end{array}} \right]\). Which one of the following statements is not TRUE for the eigen values and eigen vectors of the matrix M?

    Solution

    A = \(\left[ {\begin{array}{*{20}{c}} 5\\ 4 \end{array}\begin{array}{*{20}{c}} { - 1}\\ 1 \end{array}} \right]\)

    Characteristic Equation: |A – λ I | = 0

    So, \(\left| {\begin{array}{*{20}{c}} {5 - \;{\rm{\lambda }}}&{ - 1}\\ 4&{1 - \;{\rm{\lambda }}} \end{array}} \right|\) = 0

    5 - 5λ – λ + λ2 + 4 = 0

    λ- 6 λ + 9 = 0

    λ = 3, 3

    Product of all the eigen values is = 3 × 3 = 9

    An algebraic multiplicity of eigenvalue 3 is 2.

    Also, it has only one independent eigenvector that exists.

    Therefore options 2 and 3 are not TRUE (FALSE).

  • Question 12
    2 / -0.33
    Let X1, X2 be two independent normal random variables with means μ1, μ2 and standard deviations σ1, σ2 respectively. Consider Y =X1 – X2 ; μ1 = μ2 =1, σ1 = 1, σ2 = 2. Then,
    Solution

    Given:

    μ1 = μ2 =1, σ1 = 1, σ2 = 2

    Calculation:  X1, X2 are two independent random variables

    Y = X1 - X2

    μ(Y) = μ(X1 - X2)

    = μ(X1) - μ(X2)

    = μ1 - μ2 = 1 – 1 = 0

    Hence, Mean = 0

    Since X1, X2 are independent variables, Var(Y) is

    Var(Y) = Var(X1) – Var(X2)

    = σ12 + σ22 = 1 + 4 = 5

    Hence, Variance = 5

  • Question 13
    2 / -0.33
    Find the value of \(\mathop {{\rm{lim}}}\limits_{x \to 0\;} \frac{{{{({p^x} - 1)}^3}}}{{({q^x} - 1).sin2x.\;{\rm{log}}\left( {1\; + \;x} \right)}}\)
    Solution

    \(let\;L\; = \;\mathop {{\rm{lim}}}\limits_{x \to 0\;} \frac{{{{({p^x} - 1)}^3}}}{{({q^x} - 1).sin2x.\;{\rm{log}}\left( {1\; + \;x} \right)}}\)

    Since x → 0 ∴ x3 → 0

    Divide number and denominator by x3

    \(L\; = \;\mathop {{\rm{lim}}}\limits_{x \to 0\;} \frac{{\frac{{{{\left( {{p^x} - 1} \right)}^3}}}{{{x^3}}}}}{{\;\frac{{({q^x} - 1).sin2x.\;{\rm{log}}\left( {1\; + \;x} \right)}}{{{x^3}}}\;}}\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{a^x} - 1}}{x}\; = \;lo{g_e}a\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{sinx}}{x}\; = \;1\)

    \(\therefore \;\mathop {{\rm{lim}}}\limits_{2x \to 0} \frac{{2sin2x}}{{2x}}\; = \;2\;\left( {\because as\;x \to 0\;then\;2x \to 0\;} \right)\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{1\; + \;logx}}{x} = 1\)

    \(L = \frac{{{{(\log p)}^3}\;}}{{2logq}}\)

    Confusion points:

    (log(a))2 ≠ 2log(a)

    log(a2) = 2log(a)

  • Question 14
    2 / -0.33

    What is the minimum value on the interval [4, 5].of the below given function?

    f(x) = 3x3 – 40.5x2 + 180x + 7

    Solution

    f(x) = 3x3 – 40.5x2 + 180x + 7

    f’(x) = 9x2 – 81x + 180 = 0

    put f’(x) = 0 to find the point at which maximum and minimum value exists

    9x2 – 81x + 180 = 0

    x2 – 9x + 20 = 0

    (x – 5)(x – 4 ) = 0

    ∴ x = 5 or x =4

    Interval [4, 5]

    f'’(x) = 2x – 9

    put x = 4

    f’’(x) = -1 < 0 (maximum value might exist)

    put x = 5

    f’’(x) = 1 > 0 (minimum value might exist)

    Also check border values:

    value of x

    f(x)

     

    4

     3x3 – 40.5x2 + 180x + 7 = 271

    Maximumvalue

    5

     3x3 – 40.5x2 + 180x + 7 = 269.5

    Minimum value


    The minimum value is 269.5

  • Question 15
    2 / -0.33

     If \(A = \;\left[ {\begin{array}{*{20}{c}}1&0&0\\1&0&1\\0&1&0\end{array}} \right]\) then A102 is _____.

    Solution

    Characteristic equation of given matrix

    \(\left| {\begin{array}{*{20}{c}}{1 - \lambda }&0&0\\1&{ - \;\lambda }&1\\0&1&{ - \;\lambda }\end{array}} \right| = 0\)

    (1 – λ) × (λ2 – 1) = 0

    λ2 – 1 – λ3 + λ = 0

    λ3 = λ2 + λ – 1

    Every matrix satisfies its own characteristic equation.

    A3 = A2 + A – I

    Where I is identity matrix

    Multiplying by A on both sides

    A4 = A3 + A2 – A = A2 + A – I + A2 – A

    ∴ A4 = 2A2 – I

    Multiplying by A2 on both sides

    A6 = 2A4 – A2

    A6 = 2(2A2 – I) – A2 = 4A2 – 2I – A2

    ∴ A6 = 3A2 – 2I

    Multiplying by A2 on both sides

    A8 = 3A4 – 2A2 = 3(2A2 – I) – 2A2

    A8 = 4A2 – 3I

    By mathematical induction

    A2n = nA2 – (n – 1)I

    ∴ A102 = 51A2 – 50I

    \({A^2} = \;\left[ {\begin{array}{*{20}{c}}1&0&0\\1&0&1\\0&1&0\end{array}} \right] \times \;\left[ {\begin{array}{*{20}{c}}1&0&0\\1&0&1\\0&1&0\end{array}} \right]\;\)

    \({A^2} = \;\left[ {\begin{array}{*{20}{c}}1&0&0\\1&1&0\\1&0&1\end{array}} \right]\)

    A102 = 51A2 – 50I

    \({A^{102}} = 51 \times \left[ {\begin{array}{*{20}{c}}1&0&0\\1&1&0\\1&0&1\end{array}} \right] - 50\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\)

    \({A^{102}} = \;\left[ {\begin{array}{*{20}{c}}1&0&0\\{51}&1&0\\{51}&0&1\end{array}} \right]\;\)

    Option 1 is correct.

  • Question 16
    2 / -0.33

    The rank of the matrix

    \(\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0&0&0\\ 0&0&1&{ - 1}&0\\ 0&1&{ - 1}&0&0\\ { - 1}&0&0&0&1\\ 0&0&0&1&{ - 1} \end{array}} \right]\)

    Solution

    Calculation:

    Given matrix → \(A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0&0&0\\ 0&0&1&{ - 1}&0\\ 0&1&{ - 1}&0&0\\ { - 1}&0&0&0&1\\ 0&0&0&1&{ - 1} \end{array}} \right]\) 

    Apply now transformation, R4 → R4 + R1, we get,

    \(A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0&0&0\\ 0&0&1&{ - 1}&0\\ 0&1&{ - 1}&0&0\\ 0&{ - 1}&0&0&1\\ 0&0&0&1&{ - 1} \end{array}} \right]\)

    R2 ↔ R3

    \(A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0&0&0\\ 0&1&{ - 1}&0&0\\ 0&0&1&{ - 1}&0\\ 0&{ - 1}&0&0&1\\ 0&0&0&1&{ - 1} \end{array}} \right]\)

    R4 → R4 + R2

    A = \(\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0&0&0\\ 0&1&{ - 1}&0&0\\ 0&0&1&{ - 1}&0\\ 0&0&{ - 1}&0&1\\ 0&0&0&1&{ - 1} \end{array}} \right]\)

    R4 → R4 + R3

    \(A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0&0&0\\ 0&1&{ - 1}&0&0\\ 0&0&1&{ - 1}&0\\ 0&0&0&{ - 1}&1\\ 0&0&0&1&{ - 1} \end{array}} \right]\)

    R5 → R5 + R4

    \(A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0&0&0\\ 0&1&{ - 1}&0&0\\ 0&0&1&{ - 1}&0\\ 0&0&0&{ - 1}&1\\ 0&0&0&0&0 \end{array}} \right]\) → This matrix is in triangular form with last row = 0,

    So, Rank = 4

  • Question 17
    2 / -0.33

    I have in my pocket ten coins. Nine of them are ordinary coins with equal chances of coming up head and tail when tossed and the tenth has two heads.

    If I toss the coin and it comes up heads, what is the probability that it is the coin with two heads?
    Solution

    Let D is the event that the coin is the one with two heads.

    Let H is the event that we get a head when we toss the coin.

    The required probability is P(D|H)

    By using Bayes theorem, \(P\left( {D{\rm{|}}H} \right) = \frac{{P\left( {H{\rm{|}}D} \right)P\left( D \right)}}{{P\left( H \right)}}\)

    P(H|D) = 1

    P(D) = 1/10 = 0.1

    P(H) = P(H ∩ D) + P(H ∩ DC)

    = P(H|D) P(D) + P(H|DC) P(DC)

    = (1) (0.1) + (0.5) (0.9) = 11/20

    \(P\left( {D{\rm{|}}H} \right) = \frac{{\frac{1}{{10}}}}{{\frac{{11}}{{20}}}} = \frac{2}{{11}}\)

  • Question 18
    2 / -0.33

    Let the function f satisfies \(f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = {x^2},\;x \ne 0\).

    The value of the integral \(\mathop \smallint \limits_1^2 {x^2}f\left( x \right)dx\) is
    Solution

    \(f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = {x^2}\)

    \(f\left( {\frac{1}{x}} \right) + 2f\left( x \right) = \frac{1}{{{x^2}}}\)

    By solving the above two equations,

    \(2f\left( {\frac{1}{x}} \right) + 4\;f\left( x \right) - f\left( x \right) - 2f\left( {\frac{1}{x}} \right) = \frac{2}{{{x^2}}} - {x^2}\)

    \(\Rightarrow 3f\left( x \right) = \frac{2}{{{x^2}}} - {x^2}\)

    \(\Rightarrow {x^2}f\left( x \right) = \frac{1}{3}\left( {1 - {x^4}} \right)\)

    \(\mathop \smallint \limits_1^2 {x^2}f\left( x \right)dx = \mathop \smallint \limits_1^2 \frac{1}{3}\left( {2 - {x^4}} \right)dx\)

    \( = \frac{1}{3}\left[ {2x - \frac{{{x^5}}}{5}} \right]_1^2\)

    \(= \frac{1}{3}\left[ {\left( {2 - 1} \right) - \frac{1}{5}\left( {32 - 1} \right)} \right] = \frac{{ - 7}}{5}\)

  • Question 19
    2 / -0.33
    For real constants a and b, let \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\) be an orthogonal matrix. Then which of the following statements is/are always TRUE?
    Solution

    Concept:

    A square matrix ‘A’ is said to be orthogonal if it follows the following condition.

    AAT = ATA = I

    Calculation:

    \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\)

    \({M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right]\)

    \(M{M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right]\)

    For orthogonal matrix, MMT = I

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

    By comparing both the sides, we get

    \(\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }} = 0 \Rightarrow a + b = 0\)

    a2 + b2 = 1

    \(\Rightarrow b = \pm \sqrt {1 - {a^2}}\)

    Therefore, \(b = \sqrt {1 - {a^2}}\) is not always true.

    ⇒ (a + b)2 – 2ab = 1

    \(\Rightarrow ab = - \frac{1}{2}\)

    By using the relation, a + b = 0 i.e. b = -a, we get

    \( \Rightarrow a\left( { - a} \right) = - \frac{1}{2} \Rightarrow a = \pm \frac{1}{{\sqrt 2 }}\)

    For \(a = \frac{1}{{\sqrt 2 }},b = - \frac{1}{{\sqrt 2 }}\)\(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)

    \({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)

    \( = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {I_2}\)

    For \(a = \frac{{ - 1}}{{\sqrt 2 }},b = \frac{1}{{\sqrt 2 }}\)\(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)

    \({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)

    \( = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&0 \end{array}} \right] \ne {I_2}\)

    Therefore, M2 = I2 is not always true.

  • Question 20
    2 / -0.33

    Consider the following system of linear equations,

    \({x_1} + 2{x_2} = {b_1}\)

    \(2{x_1} + 4{x_2} = {b_2}\)

    \(3{x_1} + 7{x_2} = {b_3}\)

    \(3{x_1} + 9{x_2} = {b_4}\)

    Which one of the following conditions ensures that a solution exists for the above system?
    Solution

    Given:

    \({x_1} + 2{x_2} = {b_1}\)     …1)

    \(2{x_1} + 4{x_2} = {b_2}\)     …2)

    \(3{x_1} + 7{x_2} = {b_3}\)     …3)

    \(3{x_1} + 9{x_2} = {b_4}\)     …4)

    From equations (1) and (2), it is clear that:

    \({b_2} = 2{b_1}\)

    So options (2) and (4) are incorrect.

    Evaluating option (3) now, we are given:

    3b1 – 6b3 + b 4 = 0

    Using Equation 1, 3 and 4, we can write:

    \(3({x_1} + 2{x_2}) - 6\left( {3{x_1} + 7{x_2}} \right) + \;3{x_1} + 9{x_2} \ne 0\) 

    Hence option 3 is also incorrect.

    Analysing option 1, we are given:

    6b1 – 3b3 + b4 = 0

    Put the value from equation 1, 3 and 4

    \(6({x_1} + 2{x_2}) - 3\left( {3{x_1} + 7{x_2}} \right) + \;3{x_1} + 9{x_2} = 0\)

    Hence option 1 is correct.
  • Question 21
    2 / -0.33
    Find the value of \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;{\frac{{\left( {{a^x} + {b^x} + {c^x} + {d^x}} \right)}}{4}^{\frac{1}{x}}}\)?
    Solution

    \(\mathop {{\rm{lim}}}\limits_{x \to \infty } \;f{\left( x \right)^{g\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to a} g\left( x \right)\left( {f\left( x \right)\; - \;1} \right)}}\;if\;it\;is\;of\;the\;form\;{1^\infty }\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;{\frac{{\left( {{a^x} + {b^x} + {c^x} + {d^x}\;} \right)}}{4}^{\frac{1}{x}}}\) 

    It is of the form 1

    \(= {e^{\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x}} \right)\left( {\frac{{{a^x} + {b^x} + {c^x} + {d^x}}}{4} - \;1} \right)}}\)

    \(= {e^{\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{4}\frac{{({a^x}\; - \;1) + ({b^x} - 1) + \left( {{c^x} - 1} \right)\; + ({d^x} - 1)\;}}{x}} \right)}}\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{a^x} - 1}}{x} = lo{g_e}a\)

    \(= {e^{\left( {\frac{{loga + logb + logc + logd}}{4}\;} \right)}}\)

    \(= {e^{\frac{{{{\log }_{\rm{e}}}\left( {abcd} \right)}}{4}\;}}\)

    \(= {e^{{{\log }_{\rm{e}}}{{\left( {abcd} \right)}^{\frac{1}{4}}}\;}}\)

    \(= {\left( {abcd} \right)^{\frac{1}{4}}}\)

    \(= \sqrt[4]{{abcd}}\)

  • Question 22
    2 / -0.33

    Let \(A = {\rm{\;}}\left( {\begin{array}{*{20}{c}} 3&0&0\\ 0&2&{ - 5}\\ 0&{\rm{\alpha }}&{ - 2} \end{array}} \right)\) for some a ϵ R. Suppose there exists a 3 × 3 matrix P such that

    \({{\rm{P}}^{ - 1}}{\rm{AP}} = \left( {\begin{array}{*{20}{c}} 3&0&0\\ 0&3&0\\ 0&0&{ - 3} \end{array}} \right).\) Then the value of α is
    Solution

    From diagonalization,

    \({{\rm{P}}^{ - 1}}{\rm{AP}} = \left( {\begin{array}{*{20}{c}} 3&0&0\\ 0&3&0\\ 0&0&{ - 3} \end{array}} \right)\)

    Comparing with

    \({{\rm{P}}^{ - 1}}{\rm{AP}} = \left( {\begin{array}{*{20}{c}} {{\rm{\lambda }}1}&0&0\\ 0&{{\rm{\lambda }}2}&0\\ 0&0&{{\rm{\lambda }}3} \end{array}} \right)\)

    where λ1, λ2, and λ3 is an eigenvalue of A

    ∴ the eigenvalue of matrix A is 3, 3, -3

    Using the property of eigenvalue:

    The determinant of matrix A = product of eigenvalues

    \(\left| {\begin{array}{*{20}{c}} 3&0&0\\ 0&2&{ - 5}\\ 0&{\rm{\alpha }}&{ - 2} \end{array}} \right| = 3 \times 3 \times - 3\)

    ∴ 3(-4 + 5α) = -27

    ∴ α = -1
  • Question 23
    2 / -0.33
    If \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = k\pi ,\) then the value of k is equal to ______.
    Solution

    Concept –

    Following steps to solve the equation \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = k\pi ,\)

    1. To remove the modulus
    2. To keep sin x positive in the interval 0 to π to 2π and to keep the sinx negative in the interval
    • This is because x in the above equation is always positive but the value sinx changes in the two mentioned intervals.

     

    Explanation –

    Solving the equation as per the steps,

    \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = \mathop \smallint \nolimits_0^\pi xsinxdx + \left( { - \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx} \right)\)

    \(= \mathop \smallint \nolimits_0^\pi xsinxdx - \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx\)

    Keeping u = x, du = dx, dv = sinxdx, so v = - cosx,

    \(= \mathop \smallint \nolimits_0^\pi udv = uv - \mathop \smallint \nolimits_0^\pi vdu\)

    \( = \mathop \smallint \nolimits_0^\pi xsinxdx = \left[ { - xcosx} \right]_0^\pi + \mathop \smallint \nolimits_0^\pi cosxdx\;\)

    \( = \pi + \left[ {sinx} \right]_0^\pi \)

    Now, repeating the same with \(- \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx\), we get -3

    Hence, π - (-3π) = 4π

    Therefore, k = 4

  • Question 24
    2 / -0.33

    A probability function X has probability density function f(x) as given below

    \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\alpha x + \beta {x^2} - 1\;\;\;\;\;0 \le x \le 3}\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise} \end{array}} \right.\)

    If the expected value E(X) =\(\frac{5}{4}\) what it the value α + β?
    Solution

    Probability density function

    \(\mathop \smallint \limits_{ - \infty \;}^\infty f\left( x \right)dx = 1\)

    \(\mathop \smallint \limits_{ - \infty \;}^0 f\left( x \right)dx + \mathop \smallint \limits_0^3 f\left( x \right)dx + \mathop \smallint \limits_3^\infty f\left( x \right)dx = 1\)

    \(0 + \mathop \smallint \limits_0^3 \left( {\alpha x + \beta {x^2} - 1} \right)dx + 0 = 1\)

    \(\left( {\frac{{a{x^2}}}{2} + \frac{{\beta {x^3}}}{3} - x} \right)_0^3 = 1\)

    \(9\alpha + 18\beta = \;8\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right)\)

    \(E\left( X \right) = \;\mathop \smallint \limits_{0\;}^3 xf\left( x \right)dx = \frac{5}{4}\)

    \(\mathop \smallint \limits_{0\;}^3 x\left( {\alpha x + \beta {x^2} - 1} \right)dx = \frac{5}{4}\)

    \(\left( {\frac{{a{x^3}}}{3} + \frac{{\beta {x^4}}}{4} - \frac{{{x^2}}}{2}} \right)_0^3 = \frac{5}{4}\)

    \(36\alpha + 81\beta = \;23\;\;\;\;\;\;\;\;\;\left( 2 \right)\)

    Solving (1) and (2) we get

    \(\therefore \alpha = \; \frac{{26}}{9}\;and\;\beta = {-1}\)

    \(\alpha + \;\beta = \frac{17}{9}\)
  • Question 25
    2 / -0.33
    The matrix \(A = \left[ {\begin{array}{*{20}{c}} {\frac{3}{2}}&0&{\frac{1}{2}}\\ 0&{ - 1}&0\\ {\frac{1}{2}}&0&{\frac{3}{2}} \end{array}} \right]\) has three distinct Eigen values and one of its Eigen vectors is \(\left[ {\begin{array}{*{20}{c}} 1\\ 0\\ { 1} \end{array}} \right]\). Which one of the following can be another Eigen vector of A?
    Solution

    Concept:

    If the matrix is symmetric then the product of transpose of one eigenvector to the other eigenvector should be zero. 

    Calculation:

    The eigenvectors of a symmetric matrix A corresponding to different eigenvalues are orthogonal to each other.

    The given matrix,

    \(A = \left[ {\begin{array}{*{20}{c}} {\frac{3}{2}}&0&{\frac{1}{2}}\\ 0&{ - 1}&0\\ {\frac{1}{2}}&0&{\frac{3}{2}} \end{array}} \right]\)

    AT = A

    Hence A is a symmetric matrix.

    \({\left[ {\begin{array}{*{20}{c}} { 1}\\ 0 \\1 \end{array}} \right]^T} = \;\left[ {\begin{array}{*{20}{c}} { 1}&0&1 \end{array}} \right]\)

    Option 3:

    \(\left[ {\begin{array}{*{20}{c}} { 1}&0 &1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {1}\\ 0 \\-1\end{array}} \right] = \left[ {1 + 0 -1} \right] = \left[ 0 \right]\;\)

    Therefore \(\left[ {\begin{array}{*{20}{c}} 1\\ 0\\ { - 1} \end{array}} \right]\)can be another Eigenvector of A.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now