Concept:
A square matrix ‘A’ is said to be orthogonal if it follows the following condition.
AAT = ATA = I
Calculation:
\(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\)
\({M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right]\)
\(M{M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right]\)
For orthogonal matrix, MMT = I
\( \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)
By comparing both the sides, we get
\(\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }} = 0 \Rightarrow a + b = 0\)
a2 + b2 = 1
\(\Rightarrow b = \pm \sqrt {1 - {a^2}}\)
Therefore, \(b = \sqrt {1 - {a^2}}\) is not always true.
⇒ (a + b)2 – 2ab = 1
\(\Rightarrow ab = - \frac{1}{2}\)
By using the relation, a + b = 0 i.e. b = -a, we get
\( \Rightarrow a\left( { - a} \right) = - \frac{1}{2} \Rightarrow a = \pm \frac{1}{{\sqrt 2 }}\)
For \(a = \frac{1}{{\sqrt 2 }},b = - \frac{1}{{\sqrt 2 }}\), \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)
\({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)
\( = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {I_2}\)
For \(a = \frac{{ - 1}}{{\sqrt 2 }},b = \frac{1}{{\sqrt 2 }}\), \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)
\({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)
\( = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&0 \end{array}} \right] \ne {I_2}\)
Therefore, M2 = I2 is not always true.