\(\left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]^T}\)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ 0&{{a_{22}}}&{{a_{23}}}\\ 0&0&{{a_{33}}} \end{array}} \right]\)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{11}}{a_{12}}}&{{a_{11}}{a_{13}}}\\ {{a_{11}}{a_{12}}}&{a_{12}^2 + a_{22}^2}&{{a_{12}}{a_{13}} + {a_{22}}{a_{23}}}\\ {{a_{11}}{a_{13}}}&{{a_{12}}{a_{13}} + {a_{22}}{a_{23}}}&{a_{13}^2 + a_{23}^2 + a_{33}^2} \end{array}} \right]\)
By comparing on both sides,
a11 = 2
a11 a12 = 3 ⇒ a12 = 3/2
a11 a13 = 3 ⇒ a13 = 3/2
\(a_{12}^2 + a_{22}^2 = 2\)
\( \Rightarrow {\left( {\frac{3}{2}} \right)^2} + a_{22}^2 = 2 \Rightarrow {a_{22}} = \frac{j}{2}\)
a12 a13 + a22 a23 = 1
\( \Rightarrow \left( {\frac{3}{2}} \right)\left( {\frac{3}{2}} \right) + \left( {\frac{j}{2}} \right){a_{23}} = 1 \Rightarrow {a_{23}} = j\frac{5}{2}\)
\(a_{13}^2 + a_{23}^2 + a_{33}^2 = 7\)
\( \Rightarrow {\left( {\frac{3}{2}} \right)^2} + {\left( {j\frac{5}{2}} \right)^2} + a_{33}^2 = 7\)
\( \Rightarrow a_{33}^2 = 7 - \frac{9}{4} + \frac{{25}}{4} = 11 \Rightarrow {a_{33}} = \sqrt {11} \)
Now the lower triangular representation of the given 3 × 3 matrices obtained through the given decomposition becomes
\(\left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&0&0\\ {\frac{3}{2}}&{j\frac{1}{2}}&0\\ {\frac{3}{2}}&{j\frac{5}{2}}&{\sqrt {11} } \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} 2&0&0\\ {\frac{3}{2}}&{j\frac{1}{2}}&0\\ {\frac{3}{2}}&{j\frac{5}{2}}&{\sqrt {11} } \end{array}} \right]^T}\)
Therefore, the number of purely real elements = 7