Self Studies

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution to the system of equations \(\left[ {\begin{array}{*{20}{c}} 2&5\\ { - 4}&3 \end{array}} \right]\left\{ {\begin{array}{*{20}{c}} x\\ y \end{array}} \right\} = \left\{ {\begin{array}{*{20}{c}} 2\\ { - 30} \end{array}} \right\}\) is
    Solution

    Concept:

    It is case of equal matrix

    ∴ L. H. S = R. H. S

    Calculation:

    \(\left[ {\begin{array}{*{20}{c}} 2&5\\ { - 4}&3 \end{array}} \right]\left\{ {\begin{array}{*{20}{c}} x\\ y \end{array}} \right\} = \left\{ {\begin{array}{*{20}{c}} 2\\ { - 30} \end{array}} \right\}\)

    2x + 5y = 2     ----(I)

    -4x + 3y = -30   ----(II)

    Multiply eq (1) by 4 and (II) by 2

    ∴8x + 20y = 8       ---(III)

    -8x + 6y = -60       ---(IV)

    Adding eq (I) and (II)

    26y = -52 ⇒ y = -2

    Putting the value of y is eq (I)

    2x + 5 (-2) = 2 ⇒ x = 6

  • Question 2
    1 / -0

    What is the value of p if the solution of the given linear equations has infinitely many solutions

    10a + 3b + 2c = 0

    6a + 5b + c = 0

    4a + pb + 5c = 0

    In the above equations a, b, c are variable and p is contant.

    Solution

    Given linear equations 

    10a + 3b + 2c = 0

    6a + 5b + c = 0

    4a + pb + 5c = 0

    Corresponding matrix

    \(M=\left[ {\begin{array}{*{20}{c}} 10&3&2\\ 6&5&1\\ 4&p&5 \end{array}} \right]\)

    linear equations have infinitely many solutions

    Therefore determinant of the matrix is 0

    \(|M|= 0\)

    \(\left| {\begin{array}{*{20}{c}} 10&3&2\\ 6&5&1\\ 4&p&5 \end{array}} \right|= 0\)

    10(25 - p) -3(30 - 4) + 2(6p - 20) = 0

    250 - 10p - 78 + 12p - 40 = 0

    2p = -132 

    ∴ p = -66

  • Question 3
    1 / -0
    Matrix for which LU decomposition is not possible?
    Solution

    An invertible matrix A has an LU decomposition provided that all it's leading submatrices have non-zero determinants.

    All the matrices in the options are invertible because 

    1.  \(|A| = 2\) 
    2.  \(|A| = 1\)
    3.  \(|A| = 1\)
    4. \(|A| = -6\)

    In option 4

    \(A = \left[ {\begin{array}{*{20}{c}} 0&2\\ 3&1 \end{array}} \right]\) in this leading sub matrix \(A = [ 0 ]\)

    Hence LU decomposition is not possible

  • Question 4
    1 / -0

    Consider the system of equations (x + 3) p + 12q - 6x = 0, xp + (x - 5)q = 5x + 8.

    If the system of equations has infinitely many solutions then what is the value of x?

    Solution

    (x + 3) p + 12q = 6x

    xp + (x - 5)q = 5x + 8

    \(A = \left[ {\begin{array}{*{20}{c}} {x + 3}&12\\ x&{x - 5} \end{array}} \right]B = \left[ {\begin{array}{*{20}{c}} {6x}\\ {5x + 8} \end{array}} \right]\)

    The given system of linear equations has infinitely many solutions if ρ(A) = ρ(A|B) < n = 2

    \(\left[ {A|B} \right] = \left[ {\begin{array}{*{20}{c}} {x + 3}&12&|~~{6x}\\ x&{x - 5}&~~~~|{5x+8 } \end{array}} \right]\)

    To get the rank less than 2, one row should be dependent on another.

    (x+3)(x - 5) - 12x = 0

    x2 - 5x + 3x - 15 - 12x = 0

    x2 - 14x - 15 = 0

    x2 - 15x + x - 15 = 0

    (x-15)(x + 1) = 0

    x = 15 and x = -1

    For x = 15, system of equation is inconsistent.

    For x = - 1, it has infinately many solution. 

  • Question 5
    1 / -0

    Consider the below given homogeneous linear equation

    2x – 4z + 6y + 2= 0

    6z + 10y + 16 = 0

    – 10z + 2x – 4y = 14

    Determine which of the following statements is true?
    Solution

    2x – 4z + 6y  + 2 = 0

    ∴2x + 6y – 4z = – 2

    6z + 10y + 16 = 0

    ∴10y + 6z = -16

    – 10z + 2x – 4y

    ∴ 2x – 4y – 10z = 14

    The coefficient matrix of the given linear equation is

    \(\left[ {\begin{array}{*{20}{c}} 2&6&{ - 4}\\ 0&10&6\\ 2&{ - 4}&{ - 10} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} x\\ y \end{array}}\\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} { - 2}\\ { - 16} \end{array}}\\ 14 \end{array}} \right]\;\)

    \(let\;M = \left[ {\begin{array}{*{20}{c}} 2&6&{ - 4}\\ 0&10&6\\ 2&{ - 4}&{ - 10} \end{array}} \right]\)

    order = 3

    Let the augmented matrix be

    \(X = \;\left[ {\begin{array}{*{20}{c}} 2&6&{ - 4}\\ 0&10&6\\ 2&{ - 4}&{ - 10} \end{array}\left| {\begin{array}{*{20}{c}} { - 2}\\ { - 16}\\ 14 \end{array}} \right.} \right]\)

    R3 → R3 – R1

    \(X = \;\left[ {\begin{array}{*{20}{c}} 2&6&{ - 4}\\ 0&10&6\\ 0&{ - 10}&{ - 6} \end{array}\left| {\begin{array}{*{20}{c}} { - 2}\\ { - 16}\\ 16 \end{array}} \right.} \right]\)

    R3 → R3 + R2

    \(X = \;\left[ {\begin{array}{*{20}{c}} 2&6&{ - 4}\\ 0&10&6\\ 0&{ 0}&{ 0} \end{array}\left| {\begin{array}{*{20}{c}} { - 2}\\ { - 16}\\ 0 \end{array}} \right.} \right]\)

    Since Rank of M = Rank of X < 3

    Therefore, the system has infinitely many solutions.

  • Question 6
    1 / -0

    Consider a matrix M \(= \left[ {\begin{array}{*{20}{c}} 7&11\\ 5&9 \end{array}} \right]\;\)if M is going through LU decomposition and Matrix L diagonal elements are 1. What is the product of the main diagonal elements of Matrix U?

    Solution

    \(\)LU = M

    \(\left[ {\begin{array}{*{20}{c}} 1&0\\ a&1 \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} x&y\\ 0&z \end{array}} \right]\;= \left[ {\begin{array}{*{20}{c}} 7&11\\ 5&9 \end{array}} \right]\;\)

    \(\left[ {\begin{array}{*{20}{c}} x&y\\ ax+0&ay+z \end{array}} \right]\;= \left[ {\begin{array}{*{20}{c}} 7&11\\ 5&9 \end{array}} \right]\;\)

    Comparing:

    x = 7, y = 11

    ax = 5, ay+z = 9

    a = 5/7

    ay+z = 9

    (5/7) × 11 + z = 9 

    z = 8/7

    Diagonal of x and z

    x × z = 7 × 8/7 = 8

    The product of the trace of Matrix U is 8

  • Question 7
    1 / -0

    Among the given two sets which is/are consistent:   

    \(S1 = \{ 3x + ay + 4z = 0,\;\;bx + 2y + z = \;0,\;\;5x + 7z + 9z = 0\)

    \(S2 = \;\;\left\{ {2x + 6y = \; - 11,\;\;6x + 20y - \;6z = \; - 3,\;\;6y - 18z\; = \; - 1} \right\}\)

    Solution

    Set S1 contains homogeneous equations, homogeneous equations are always consistent because it always satisfied a trivial solution i.e. \(x = y = z = 0\)

    For S2

    \(\left[ {\begin{array}{*{20}{c}} 2&6&0&{ - 11}\\ 6&{20}&{ - 6}&{ - 3}\\ 0&6&{ - 18}&{ - 1} \end{array}} \right]\)

    R2 → R2 - 3R1

    \(\left[ {\begin{array}{*{20}{c}} 2&6&0&{ - 11}\\ 0&2&{ - 6}&{30}\\ 0&6&{ - 18}&{ - 1} \end{array}} \right]\)

    R2 → 3R2

    \(\left[ {\begin{array}{*{20}{c}} 2&6&0&{ - 11}\\ 0&6&{ - 18}&{90}\\ 0&6&{ - 18}&{ - 1} \end{array}} \right]\)

    R3 → R3 - R2

    \(\left[ {\begin{array}{*{20}{c}} 2&6&0&{ - 11}\\ 0&6&{ - 18}&{90}\\ 0&0&0&{ - 91} \end{array}} \right]\)

    Rank Augmented matrix is 3 while rank of coefficient matrix has rank is 2

    Hence the S2 is inconsistent

    ∴ only S1 is consistent

  • Question 8
    1 / -0

    The number of purely real elements in a lower triangular representation of the given 3 × 3 matrix obtained through the given decomposition is _____

    \(\left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]^T}\)

    Solution

    \(\left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]^T}\)

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&0&0\\ {{a_{12}}}&{{a_{22}}}&0\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ 0&{{a_{22}}}&{{a_{23}}}\\ 0&0&{{a_{33}}} \end{array}} \right]\)

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{11}}{a_{12}}}&{{a_{11}}{a_{13}}}\\ {{a_{11}}{a_{12}}}&{a_{12}^2 + a_{22}^2}&{{a_{12}}{a_{13}} + {a_{22}}{a_{23}}}\\ {{a_{11}}{a_{13}}}&{{a_{12}}{a_{13}} + {a_{22}}{a_{23}}}&{a_{13}^2 + a_{23}^2 + a_{33}^2} \end{array}} \right]\)

    By comparing on both sides,

    a11 = 2

    a11 a12 = 3 ⇒ a12 = 3/2

    a11 a13 = 3 ⇒ a13 = 3/2

    \(a_{12}^2 + a_{22}^2 = 2\)

    \( \Rightarrow {\left( {\frac{3}{2}} \right)^2} + a_{22}^2 = 2 \Rightarrow {a_{22}} = \frac{j}{2}\)

    a12 a13 + a22 a23 = 1

    \( \Rightarrow \left( {\frac{3}{2}} \right)\left( {\frac{3}{2}} \right) + \left( {\frac{j}{2}} \right){a_{23}} = 1 \Rightarrow {a_{23}} = j\frac{5}{2}\)

    \(a_{13}^2 + a_{23}^2 + a_{33}^2 = 7\)

    \( \Rightarrow {\left( {\frac{3}{2}} \right)^2} + {\left( {j\frac{5}{2}} \right)^2} + a_{33}^2 = 7\)

    \( \Rightarrow a_{33}^2 = 7 - \frac{9}{4} + \frac{{25}}{4} = 11 \Rightarrow {a_{33}} = \sqrt {11} \)

    Now the lower triangular representation of the given 3 × 3 matrices obtained through the given decomposition becomes

    \(\left[ {\begin{array}{*{20}{c}} 2&3&3\\ 3&2&1\\ 3&1&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&0&0\\ {\frac{3}{2}}&{j\frac{1}{2}}&0\\ {\frac{3}{2}}&{j\frac{5}{2}}&{\sqrt {11} } \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} 2&0&0\\ {\frac{3}{2}}&{j\frac{1}{2}}&0\\ {\frac{3}{2}}&{j\frac{5}{2}}&{\sqrt {11} } \end{array}} \right]^T}\)

    Therefore, the number of purely real elements = 7

  • Question 9
    1 / -0

    If the coefficient matrix is \({C_{n \times n}}\) and its corresponding rank is c also the augmented matrix is \({A_{n \times \left( {n + 1} \right)}}\) and its corresponding rank is a, then how many statements given below are incorrect?

    I. If c ≠ a, the equations are inconsistent with infinite number of solutions.

    II. If c = a < n, the equations are inconsistent

    III. If c = a =n, equation may be inconsistent.
    Solution
    • If c ≠ a, the equations are inconsistent i.e.  no solution possible
    • If c = a < n, the equations are consistent with infinite number of solutions
    • If c = a =n, the equations are consistent and there is a unique solution.
  • Question 10
    1 / -0

    The simultaneous equations

    2x + ay + z = 20 

    x + 3y + 4z = b

    x + 2y + 3z = c

    has unique solution then what is the value of a, b and c respectively?

    Solution

    For given system of equations to have unique solution, the determinant of the coefficient matrix should be not equal to 0

    \(\left| {\begin{array}{*{20}{c}}2&a&1\\1&3&4\\1&2&3\end{array}} \right| \ne 0\)

    \(2\left( {9 - 8} \right)\; - \;a\left( {3 - 4} \right) + \left( {2\; - \;3} \right) \ne 0\)

    \(2 + a\; - \;1\; \ne 0\;\)

    \(a\; \ne \; - 1\)

    Since Δ of coefficient matrix is not equal to 0 then b and c can take any value

    Note:

    If coefficient matrix’s Δ ≠ 0 then rank of coefficient matrix is always equal rank of augmented matrix so right-hand side of given equation can take any value

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now