Self Studies

Engineering Mathematics Test 3

Result Self Studies

Engineering Mathematics Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider a matrix \(M = \left[ {\begin{array}{*{20}{c}} 1&2\\ 2&4 \end{array}} \right]\) if one of the eigenvectors is \(\left[ {\begin{array}{*{20}{c}} { - 2}\\ 1 \end{array}} \right]\) then what is the other vector the given matrix M?
    Solution

    Explanation:

    The characteristic equation for the given matrix is

    \(M = \left| {\begin{array}{*{20}{c}} {1 - \lambda }&2\\ 2&{4 - \lambda } \end{array}} \right| = 0\)

    \({\lambda ^2} - 5\;\lambda = 0\)

    \(\;\lambda = 0\;or\;\lambda = 5\)

    The eigenvector corresponding to eigenvalue 0

    \(\left[ {\begin{array}{*{20}{c}} {1 - 0}&2\\ 2&{4 - 0} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

    R2 → R2 – 2R1

    \(\left[ {\begin{array}{*{20}{c}} 1&2\\ 0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

    x1 + 2x2 = 0

    ∴ if x1 = -2

    then x2 = 1

    The eigenvector corresponding to eigenvalue 0 is \(\left[ {\begin{array}{*{20}{c}} { - 2}\\ 1 \end{array}} \right]\)

    The eigenvector corresponding to eigenvalue 5

    \(\left[ {\begin{array}{*{20}{c}} {1 - 5}&2\\ 2&{4 - 5} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

    \(\left[ {\begin{array}{*{20}{c}} { - 4}&2\\ 2&{ - 1} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

    R2 → 2R2 + R1

    \(\left[ {\begin{array}{*{20}{c}} { - 4}&2\\ 0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

    -4x1 + 2x2 = 0

    ∴ if x1 = 1

    then x2 = 2

    The eigenvector corresponding to eigenvalue 5 is \(\left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right]\)

    Tips and Tricks:

    Since the given matrix is symmetric, so the product of transpose of one eigenvector to the other eigenvector should be zero. This can be verified from the given options

    \({\left[ {\begin{array}{*{20}{c}} { - 2}\\ 1 \end{array}} \right]^T} = \;\left[ {\begin{array}{*{20}{c}} { - 2}&1 \end{array}} \right]\)

    \(\left[ {\begin{array}{*{20}{c}} { - 2}&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {1}\\ 2 \end{array}} \right] = \left[ { - 2 + 2} \right] = \left[ 0 \right]\;\)

    The eigenvectors of a symmetric matrix A corresponding to different eigenvalues are orthogonal to each other.

  • Question 2
    1 / -0

    Consider a matrix Xn×n, the two eigenvalues of the matrix are 6 and 10 + √-1). If n is equal to three then what is the trace of X?

    Solution

    Concept:

    Trace of matrix X = sum of its eigenvalues

    Calculation:

    Since it is 3 × 3 matrix, so roots will be 3 means 3 eigenvalues. Two eigenvalues are given as 6 and 10 + √-1

    As 3 × 3 is a real matrix, in real matrix roots can never be imaginary. We have to take the complex roots in pair. So,

    Three eigenvalues are:

    6, (10 + √-1) and (10 - √-1), that is, 5, (10 + i) and (10 - i)

    Trace of matrix X = 6 + 10 + i + 10 - i = 26

    Important point:

    √-1 = i → iota (imaginary number)

  • Question 3
    1 / -0

    Let M be a real 4 × 4 matrix. Consider the following statements:

    S1: M has 4 linearly independent eigenvectors.

    S2: M has 4 distinct eigenvalues.

    S3: M is non-singular (invertible).

    Which one among the following is TRUE?
    Solution

    The given values are given by the solution of the characteristic equation, i.e.

    |A - λI| = 0

    λ1, λ2 ….. are different eigenvalues.

    If Eigenvalues are distinct, then corresponding eigenvectors are linearly independent.

    Vectors V1, V2 …. Vn are linearly independent.

    If C1V1 + C2V2 + C3V3 …… + CnVn = 0

    Implies C1 = C2 = ……. Cn = 0

    |A| ≠ 0 implies that ‘O’ is not an eigenvalues

    Other eigenvalues may be repeated, i.e. 1, 2, 2

    The two same eigenvalues give linearly dependent eigenvectors.
  • Question 4
    1 / -0
    Consider a matrix M = PQT where  \(P=(^{12}_{9}) ,\ Q=(^{6}_{19})\).Note that QT denotes the transpose of Q. What is the largest eigenvalue of M?
    Solution

    Concept:

    Determinant of Matrix  \(M = {\left[ {\begin{array}{*{20}{c}} a\\ b\\ :\\ d \end{array}} \right]_{n × 1}}{\left[ {p\;\;\;q\;\;\;..\;\;s} \right]_{1 × n\;}}\)  is 0

    product of Eigenvalues =  Determinant of matrix 

    sum of Eigenvalues =  trace of matrix

    Explanation:

    \(M = {\left[ {\begin{array}{*{20}{c}} 12\\ { 9}\\ \end{array}} \right]_{2 × 1}}{\left[ {6\;\;\;19\;\;} \right]_{1 × 2\;}}\;\)

    \(M =\left[ \begin{matrix} 72 & 228 \\ 54 & 171 \\ \end{matrix} \right]\)

    \(M =\left| \begin{matrix} 72 & 228 \\ 54 & 171 \\ \end{matrix} \right|\)

    \(|M| =12 × 9\left| \begin{matrix} 6 & 19 \\ 6 & 19 \\ \end{matrix} \right|\)

    |M| = 12 × 9 × 0 = 0

    ∴ λ1 × λ= 0

    Either λ= 0 or λ= 0 

    Trace = 6 + 19 = 25

    λ1 + λ= 25

    Since trace ≠ 0

    if λ= 0 then λ= 25

    The largest eigenvalue of M is  25.

  • Question 5
    1 / -0

    Which is not the eigenvector for the given matrix

    \(\left[ {\begin{array}{*{20}{c}} 3&1&4\\ 0&2&6\\ 0&0&5 \end{array}} \right]\) ?

    Solution

    Characteristic equation of given matrix

    \(\left| {\begin{array}{*{20}{c}} {3 - \lambda }&1&4\\ 0&{2\; - \;\lambda }&6\\ 0&0&{5 - \;\lambda } \end{array}} \right| = 0\)

    \(\left( {3\; - \;\lambda } \right) \times \left( {2\; - \lambda } \right) \times \left( {5\; - \;\lambda } \right)\; = 0\)

    Eigenvalues: 2, 3 and 5

    Eigenvector corresponds to: λ = 2

    \(\left[ {\begin{array}{*{20}{c}} 1&1&4\\ 0&0&6\\ 0&0&5 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right]\) = 0

    \(x + y + 4z = 0\)

    \(6z = 0\)

    \(5z = 0\)

    \(\therefore z = \;0\)

    \(\therefore x = \; - y\)

    if y = -2 then x = 2

    Eigenvector: (2, -2, 0)

    Eigenvector corresponds to: λ = 3

    \(\left[ {\begin{array}{*{20}{c}} 0&1&4\\ 0&{ - 1}&6\\ 0&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right]\) = 0

    \(y + 4z = 0\)

    \(- y + \;6z = 0\)

    \(2z = 0\)

    \(\therefore z = \;0\)

    \(\therefore y = \;0\)

    x can take any value

    Eigenvector: (5, 0, 0)

    Eigen vector corresponds to: λ = 5

    \(\left[ {\begin{array}{*{20}{c}} { - 2}&1&4\\ 0&{ - 3}&6\\ 0&0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right]\) = 0

    \(0 \times z = 0\)

    ∴ z can take any value

    Let z = 1

    \(- 3y + 6z = 0\)

    \(\therefore y = \;2\)

    \(- 2x + y + 4z = 0\)

    \(\therefore x = \;3\)

    Eigenvector: (3, 2, 1)
  • Question 6
    1 / -0
    Let Matrix \(A = \;\left[ {\begin{array}{*{20}{c}} a&4\\ 2&d \end{array}} \right]\)and the equation of A is A2 – 4A = 5I where I is an identity matrix find the value of |a – d| respectively.
    Solution

    A2 – 4A = 5I

    A2 – 4A - 5I = 0

    Every matrix satisfies its own characteristic equation.

    λ2 – 4λ - 5 = 0

    (λ – 5) × (λ + 1) = 0

    ∴ λ = 5 or λ = -1

    where λ is eigen value

    Product of eigen value is equal to determinant of matrix

    ad – 4 × 2 = 5 × -1

    ad – 8 = -5

    ad = 3

    The sum of the eigen value of a matrix is equal to its trace

    a + d = 5 + (-1)

    a + d = 4

    (a – d)2 = (a + d)2 - 4ad

    = 16 – 12

    = 4

    ∴ a – d = ± 2

    |a – d | = 2
  • Question 7
    1 / -0
    The matrix \(\left( \begin{matrix} 2 & -4 \\ 4 & -2 \\\end{matrix} \right)\) has
    Solution

    Let \(\text{A}=\left[ \begin{matrix} 2 & -4 \\ 4 & -2 \\\end{matrix} \right]\)

    Considering characteristic equation |A - λ I| = 0

    ∴ Characteristics equation is given by

    \(\left| \begin{array}{*{35}{r}} 2-\lambda & -4 \\ 4 & -2-\lambda \\\end{array} \right|=0\)

    ⇒ λ2 + 2λ – 2λ – 4 +16 = 0

    ⇒ λ2 + 12 = 0

    \(\text{ }\!\!\lambda\!\!\text{ }=+2\sqrt{3}~i\) (Thus complex eigen value)

    Now consider (A - λI) X = 0

    \(\left[ \begin{array}{*{35}{r}} 2-\text{ }\!\!\lambda\!\!\text{ } & -4 \\ 4 & -2-\text{ }\!\!\lambda\!\!\text{ } \\\end{array} \right]\left[ \begin{matrix} {{\text{x}}_{1}} \\ {{\text{x}}_{2}} \\\end{matrix} \right]=\left[ \begin{matrix} 0 \\ 0 \\\end{matrix} \right]\)

    When \(\text{ }\!\!\lambda\!\!\text{ }=\pm 2\sqrt{3}~i\)

    Eigen vector is given by:

    \(\left[ \begin{array}{*{35}{r}} -2-2\sqrt{3\text{i}} & -4 \\ 4 & -2\sqrt{3\text{i}} \\\end{array} \right]\left[ \begin{matrix} {{\text{x}}_{1}} \\ {{\text{x}}_{2}} \\\end{matrix} \right]=\left[ \begin{matrix} 0 \\ 0 \\\end{matrix} \right]\)

    \(2-2\sqrt{3}~i~{{\text{x}}_{1}}+4\text{ }\!\!~\!\!\text{ }{{\text{x}}_{2}}=0\)

    \(\Rightarrow \frac{{{\text{x}}_{1}}}{4}=\frac{{{\text{x}}_{2}}}{2-2\sqrt{3}\text{ }\!\!~\!\!\text{ i}}\)

    Thus, Eigen vector \({{\text{X}}_{1}}=\left[ \begin{matrix} {{\text{x}}_{1}} \\ {{\text{x}}_{2}} \\\end{matrix} \right]=\left[ \begin{matrix} 4 \\ 2-2\sqrt{3}~i \\\end{matrix} \right]\)

    When \(\text{ }\!\!\lambda\!\!\text{ }=-2\sqrt{3}~i\)

    Eigen vector is given by:

    \(\left[ \begin{array}{*{35}{r}} -2-2\sqrt{3}~i & -4 \\ 4 & -2+2\sqrt{+3}~i \\\end{array} \right]\left[ \begin{matrix} {{\text{x}}_{1}} \\ {{\text{x}}_{2}} \\\end{matrix} \right]=\left[ \begin{matrix} 0 \\ 0 \\\end{matrix} \right]\)

    \(2+2\sqrt{3}~i~{{x}_{1}}-4{{x}_{2}}=0\)

    \(\Rightarrow \frac{{{x}_{1}}}{4}=\frac{{{x}_{2}}}{2+2\sqrt{3}~i}\)

    Thus Eigen vector \({{\text{X}}_{2}}=\left[ \begin{matrix} {{\text{x}}_{1}} \\ {{\text{x}}_{2}} \\\end{matrix} \right]=\left[ \begin{matrix} 4 \\ 2+2\sqrt{3}\text{ }\!\!~\!\!\text{ i} \\\end{matrix} \right]\)

    Hence the eigen vectors are \({{\text{x}}_{1}}=\left[ \begin{matrix} 4 \\ 2+2\sqrt{3}\text{ }\!\!~\!\!\text{ i} \\\end{matrix} \right]\And \text{ }\!\!~\!\!\text{ }{{\text{x}}_{2}}=\left[ \begin{matrix} 4 \\ 2+2\sqrt{3}~i \\\end{matrix} \right]\) are complex.

    ∴ The matrix \(\left( \begin{matrix} 2 & -4 \\ 4 & -2 \\\end{matrix} \right)\) has complex eigen values and eigen vectors.
  • Question 8
    1 / -0
    Consider a matrix  \(M =\left[ {\begin{array}{*{20}{c}} 2&0&0&0&2\\ 0&2&2&2&0\\ 0&2&2&2&0\\ 0&2&2&2&0\\ 2&0&0&0&2 \end{array}} \right]\). What is the product of the non-zero eigenvalue of M?
    Solution

     \(M =\left[ {\begin{array}{*{20}{c}} 2&0&0&0&2\\ 0&2&2&2&0\\ 0&2&2&2&0\\ 0&2&2&2&0\\ 2&0&0&0&2 \end{array}} \right]\)  

    \(\left| {\rm{M}} \right| = \left| {\begin{array}{*{20}{c}} 2&0&0&0&2\\ 0&2&2&2&0\\ 0&2&2&2&0\\ 0&2&2&2&0\\ 2&0&0&0&2 \end{array}} \right|\)

    R5 → R5 – R1

    R3 → R3 – R2

    R4 → R4 – R2

    \(\left| {\rm{M}} \right| = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 2&0&0&0&2\\ 0&2&2&2&0\\ 0&0&0&0&0\\ 0&0&0&0&0\\ 0&0&0&0&0 \end{array}} \right|\)

     Rank of the matrix is 2

    number non-zero value eigen value in M ≤ rank(M)

    Therefore, there are 2 or less nonzero eigen values

    The characteristic equation of A is| M - λ I | = 0

    where λ is eigen value and I is identity matrix

    \(\left| {\begin{array}{*{20}{c}} {2 - \lambda }&0&0&0&2\\ 0&{2 - \lambda }&2&2&0\\ 0&2&{2 - \lambda }&2&0\\ 0&2&2&{2 - \lambda }&0\\ 2&0&0&0&{2 - \lambda } \end{array}} \right| = 0\)

    R1 → R1 + R5

    \(\left| {\begin{array}{*{20}{c}} {4 - \lambda }&0&0&0&{4 -\lambda}\\ 0&{2 - \lambda }&2&2&0\\ 0&2&{2 - \lambda }&2&0\\ 0&2&2&{2 - \lambda }&0\\ 2&0&0&0&{2 - \lambda } \end{array}} \right| = 0\)

    \(\left( {2 - \lambda } \right)\left| {\begin{array}{*{20}{c}} 1&0&0&0&1\\ 0&{1 - \lambda }&1&1&0\\ 0&1&{1 - \lambda }&1&0\\ 0&1&1&{1 - \lambda }&0\\ 1&0&0&0&{1 - \lambda } \end{array}} \right| = 0\)

    R2 → R2 + R3 + R4

    \(\left( {4 - \lambda } \right)\left| {\begin{array}{*{20}{c}} 1&0&0&0&1\\ 0&{6 - \lambda }&{6 - \lambda }&{6 - \lambda }&0\\ 0&2&{2 - \lambda }&2&0\\ 0&2&2&{2 - \lambda }&0\\ 2&0&0&0&{2 - \lambda } \end{array}} \right| = 0\)

    \(\left( {4 - \lambda } \right)\left( {6 - \lambda } \right)\left| {\begin{array}{*{20}{c}} 1&0&0&0&1\\ 0&1&1&1&0\\ 0&1&{2 - \lambda }&1&0\\ 0&1&1&{2 - \lambda }&0\\ 1&0&0&0&{2 - \lambda } \end{array}} \right| = 0\)

    ∴ λ = 4 or λ = 6

    Therefore, the product of eigen values = 4 × 6 = 24

  • Question 9
    1 / -0
    If \(Q = \left[ {\begin{array}{*{20}{c}}3&2&4\\2&0&2\\4&2&3\end{array}} \right]\) and \(P = \left[ {\begin{array}{*{20}{c}}{{v_1}}&{{v_2}}&{{v_3}}\end{array}} \right]\) is the matrix where v1, v2 and v3 are linearly independent eigenvectors of the matrix Q, then the sum of the absolute values of all the elements of the matrix \({P^{ - 1}}QP\) is
    Solution

    Concept:

    Diagonalization of matrix:

    If a square matrix Q of order n has n linearly independent Eigen vectors, then matrix P can be found such that \({P^{ - 1}}QP\) is a diagonal matrix.

    Let Q be a square matrix of order 3.

    Let λ1, λ2, and λ3 be Eigen values of matrix Q and \({X_1} = \left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{y_1}}\\{{z_1}}\end{array}} \right],\;{X_2} = \left[ {\begin{array}{*{20}{c}}{{x_2}}\\{{y_2}}\\{{z_2}}\end{array}} \right],\;{X_3} = \left[ {\begin{array}{*{20}{c}}{{x_3}}\\{{y_3}}\\{{z_3}}\end{array}} \right]\) be the corresponding Eigen vectors.

    Let denote the square matrix \(\left[ {\begin{array}{*{20}{c}}{{X_1}}&{{X_2}}&{{X_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\\{{z_1}}&{{z_2}}&{{z_3}}\end{array}} \right]\) by P.

    Now, the given matrix A can be diagonalized by \(D = {P^{ - 1}}QP\)

    Or the matrix A can be represented by \(Q = PD{P^{ - 1}}\)

    Where D is the diagonal matrix and it is represented by \(D = \left[ {\begin{array}{*{20}{c}}{{\lambda _1}}&0&0\\0&{{\lambda _2}}&0\\0&0&{{\lambda _3}}\end{array}} \right]\)

    Sum of all the elements of matrix \({P^{ - 1}}QP\) = Sum of all the elements of matrix D = sum of Eigen values of Q

    Properties of Eigen values:

    The sum of Eigen values of a matrix A is equal to the trace of that matrix A

    The product of Eigen values of a matrix A is equal to the determinant of that matrix A

    Calculation:

    |Q – λI| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}}{3 - \lambda }&2&4\\2&{ - \lambda }&2\\4&2&{3 - \lambda }\end{array}} \right| = 0\)

    ⇒ (3 – λ) [(-λ) (3 – λ) – 4] – 2 [2(3-λ) – 8] + 4 [4 – (-4λ)] = 0

    ⇒ (3 – λ) [-3λ + λ2 – 4] – 2 [6 – 2λ – 8] + 4 [4 + 4λ] = 0

    ⇒ -9 λ + 3 λ2 + 3 λ2 – λ3 – 12 + 4 λ + 4 + 4 λ + 16 + 16 λ = 0

    ⇒ λ3 – 6 λ2 – 15 λ – 8 = 0

    ⇒ λ = 8, -1, -1

    Eigen values of the matrix Q = 8, -1, -1

    Diagonal matrix of Q is given by,

    \(D = {P^{ - 1}}QP = \left[ {\begin{array}{*{20}{c}}8&0&0\\0&{ - 1}&0\\0&0&{ - 1}\end{array}} \right]\)

    Sum of the absolute values of all the elements = 8 + 1 + 1 = 10

    Common Mistakes:

    If the question is to find the sum of all the elements of matrix \({P^{ - 1}}QP\) = sum of Eigen values of matrix Q = λ1 + λ2 + λ3 = trace of matrix Q = 3 + 0 + 3 = 6 (one of the options given)

    But the actual question is to find the absolute sum of all the elements of matrix \({P^{ - 1}}QP\) = absolute sum of all the Eigen values of matrix = |λ1| + |λ2| + |λ3|

    So, we can’t find directly the absolute sum of all the elements of Eigen values of matrix. We need to find the Eigen values of the matrix Q as solved above.
  • Question 10
    1 / -0
    Let the characteristic equation of a 3 X 3 Matrix A be \({\lambda ^3} + a{\lambda ^2} + 47\lambda \; - \;60 = 0\) if one eigenvalue of A is 4 and a is an integer value, then what is the smallest eigenvalue of A?
    Solution

    \({\lambda ^3} + \;a{\lambda ^2} + 47\lambda \; - \;60 = 0\)

    Since one eigenvalue of matrix is 4 it satisfies the characteristic equation

    \({4^3} + \;a{4^2} + 47\left( 4 \right)\; - \;60 = 0\)

    \(64 + \;16a + 188\; - \;60 = 0\)

    \(a = \; - 12\)

    \({\lambda ^3} - 12\;{\lambda ^2} + 47\lambda \; - \;60 = 0\)

    Solving this will give

    \(\left( {\lambda - \;3} \right)\left( {\lambda \; - \;4} \right)\left( {\lambda \; - \;5} \right) = 0\)

    \(\lambda \; = \;3\;or\;\lambda \; = \;4\;or\;\lambda \; = \;5\)

    smallest eigenvalue is 3
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now