Concept:
Diagonalization of matrix:
If a square matrix Q of order n has n linearly independent Eigen vectors, then matrix P can be found such that \({P^{ - 1}}QP\) is a diagonal matrix.
Let Q be a square matrix of order 3.
Let λ1, λ2, and λ3 be Eigen values of matrix Q and \({X_1} = \left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{y_1}}\\{{z_1}}\end{array}} \right],\;{X_2} = \left[ {\begin{array}{*{20}{c}}{{x_2}}\\{{y_2}}\\{{z_2}}\end{array}} \right],\;{X_3} = \left[ {\begin{array}{*{20}{c}}{{x_3}}\\{{y_3}}\\{{z_3}}\end{array}} \right]\) be the corresponding Eigen vectors.
Let denote the square matrix \(\left[ {\begin{array}{*{20}{c}}{{X_1}}&{{X_2}}&{{X_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\\{{z_1}}&{{z_2}}&{{z_3}}\end{array}} \right]\) by P.
Now, the given matrix A can be diagonalized by \(D = {P^{ - 1}}QP\)
Or the matrix A can be represented by \(Q = PD{P^{ - 1}}\)
Where D is the diagonal matrix and it is represented by \(D = \left[ {\begin{array}{*{20}{c}}{{\lambda _1}}&0&0\\0&{{\lambda _2}}&0\\0&0&{{\lambda _3}}\end{array}} \right]\)
Sum of all the elements of matrix \({P^{ - 1}}QP\) = Sum of all the elements of matrix D = sum of Eigen values of Q
Properties of Eigen values:
The sum of Eigen values of a matrix A is equal to the trace of that matrix A
The product of Eigen values of a matrix A is equal to the determinant of that matrix A
Calculation:
|Q – λI| = 0
\(\Rightarrow \left| {\begin{array}{*{20}{c}}{3 - \lambda }&2&4\\2&{ - \lambda }&2\\4&2&{3 - \lambda }\end{array}} \right| = 0\)
⇒ (3 – λ) [(-λ) (3 – λ) – 4] – 2 [2(3-λ) – 8] + 4 [4 – (-4λ)] = 0
⇒ (3 – λ) [-3λ + λ2 – 4] – 2 [6 – 2λ – 8] + 4 [4 + 4λ] = 0
⇒ -9 λ + 3 λ2 + 3 λ2 – λ3 – 12 + 4 λ + 4 + 4 λ + 16 + 16 λ = 0
⇒ λ3 – 6 λ2 – 15 λ – 8 = 0
⇒ λ = 8, -1, -1
Eigen values of the matrix Q = 8, -1, -1
Diagonal matrix of Q is given by,
\(D = {P^{ - 1}}QP = \left[ {\begin{array}{*{20}{c}}8&0&0\\0&{ - 1}&0\\0&0&{ - 1}\end{array}} \right]\)
Sum of the absolute values of all the elements = 8 + 1 + 1 = 10
Common Mistakes:
If the question is to find the sum of all the elements of matrix \({P^{ - 1}}QP\) = sum of Eigen values of matrix Q = λ1 + λ2 + λ3 = trace of matrix Q = 3 + 0 + 3 = 6 (one of the options given)
But the actual question is to find the absolute sum of all the elements of matrix \({P^{ - 1}}QP\) = absolute sum of all the Eigen values of matrix = |λ1| + |λ2| + |λ3|
So, we can’t find directly the absolute sum of all the elements of Eigen values of matrix. We need to find the Eigen values of the matrix Q as solved above.