Concept:
Putting x = ∞ to the given limiting function, we get:
\({\left( {1 + \frac{1}{\infty }} \right)^\infty } = {1^\infty }\)
1∞ is one of the indeterminant forms.
We can modify the given limits as:
\(\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{4x}} \right)^{x}} = \mathop {\lim }\limits_{x \to \infty } {e^{ln{{\left( {1 + \frac{1}{4x}} \right)}^{x}}}}\)
Calculation
\(y = {e^{\mathop {\lim }\limits_{x \to \infty } x\;ln\left( {1 + \frac{1}{4x}} \right)}}\)
The above can be written as:
ef(x) --(1)
where:
\(y = \mathop {\lim }\limits_{x \to \infty } x\times ln\left( {1 + \frac{1}{4x}} \right)\) ---(2)
The above can be written as:
\(\mathop {\lim }\limits_{x \to \infty } \frac{{ln\left( {1 + \frac{1}{4x}} \right)}}{{1/{x}}}\)
Putting on the limit of x = ∞, we get:
\(\mathop {\lim }\limits_{x \to \infty } \frac{{In\left( {1 + \frac{1}{4x}} \right)}}{{1/{x}}} = \frac{0}{0}\)
Applying L-Hospitals rule, we get:
\( = \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {\frac{1}{{1 + \frac{1}{4x}}}} \right)\left( {\frac{{ - 1}}{{{4x^2}}}} \right)}}{{ - 1/{x^2}}} = \frac{1}{4}\)
Putting this in equation (1), we can write:
\({e^{\mathop {\lim }\limits_{x \to \infty } x\;In\;\left( {1 + \frac{1}{x}} \right)}} = {e^\frac{1}{4}}\)
\(\therefore \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{4x}} \right)^x} = e^\frac{1}{4}\)