Self Studies

Engineering Mathematics Test 4

Result Self Studies

Engineering Mathematics Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the value of \( \mathop {\lim }\limits_{\theta \to \infty } \frac{1-cos2\theta}{\theta}~?\)
    Solution

    \(let f(x) = \mathop {\lim }\limits_{\theta \to \infty } \frac{1-cos2\theta}{\theta}\)

    \(f(x) = \mathop {\lim }\limits_{\theta \to \infty } \frac{2sin^2\theta}{\theta}\)

    Since -1 ≤  sinθ ≤ 1

    Therefore 2sinθ  at max can be 2

    \( \mathop {\lim }\limits_{\theta \to \infty } \frac{1}{\theta} = 0\)

    Therefore \( f(x) = \mathop {\lim }\limits_{\theta \to \infty } \frac{1-cos2\theta}{\theta} = 0\)

  • Question 2
    1 / -0

    Compute the value of ​\(\begin{array}{*{20}{c}} {{\rm{lim}}}\\ {x \to 3} \end{array}\frac{{{x^3} - 125}}{{{x^2} - 8x +15}}\)

    Solution

    \(y =\begin{array}{*{20}{c}} {{\rm{lim}}}\\ {x \to 3} \end{array}\frac{{{x^3} - 125}}{{{x^2} - 8x +15}}\)

    \(\begin{array}{*{20}{c}} {{\rm{lim}}}\\ {x \to 3} \end{array}\frac{{{x^3} - 125}}{{{x^2} - 8x +15}} = \frac{0}{0}\)

    Applying L Hospital’s rule

    \(\begin{array}{*{20}{c}} {{\rm{lim}}}\\ {x \to 3} \end{array}\frac{{{3x^2} }}{{{2x} - 8}} = \frac{27}{-2} = \frac{-54}{4}\)

  • Question 3
    1 / -0

    The values of x for which the function

    \(f\left( x \right) = \frac{{{x^2} - 3x - 4}}{{{x^2} + 3x - 4}}\)

    is NOT continuous are

    Solution

    \(f\left( x \right) = \frac{{{x^2} - 3x - 4}}{{{x^2} + 3x - 4}}\)

    This function is not defined for:

    x2 + 3x – 4 = 0

    ⇒ (x + 4)(x - 1) = 0 i.e.

    At x = 1 and x = - 4

    ∴ This function f(x) is not continuous at x = 1, -4
  • Question 4
    1 / -0
    If the value of  \(y =\mathop {\lim }\limits_{y \to \infty } {\left( {1 + \frac{1}{4x}} \right)^{x}}\)  then find y?
    Solution

    Concept:

    Putting x = ∞ to the given limiting function, we get:

    \({\left( {1 + \frac{1}{\infty }} \right)^\infty } = {1^\infty }\)

    1 is one of the indeterminant forms.

    We can modify the given limits as:

    \(\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{4x}} \right)^{x}} = \mathop {\lim }\limits_{x \to \infty } {e^{ln{{\left( {1 + \frac{1}{4x}} \right)}^{x}}}}\)

    Calculation

    \(y = {e^{\mathop {\lim }\limits_{x \to \infty } x\;ln\left( {1 + \frac{1}{4x}} \right)}}\)

    The above can be written as:

    ef(x)    --(1)

    where:

    \(y = \mathop {\lim }\limits_{x \to \infty } x\times ln\left( {1 + \frac{1}{4x}} \right)\)       ---(2)

    The above can be written as:

    \(\mathop {\lim }\limits_{x \to \infty } \frac{{ln\left( {1 + \frac{1}{4x}} \right)}}{{1/{x}}}\)  

    Putting on the limit of x = ∞, we get:

    \(\mathop {\lim }\limits_{x \to \infty } \frac{{In\left( {1 + \frac{1}{4x}} \right)}}{{1/{x}}} = \frac{0}{0}\)

    Applying L-Hospitals rule, we get:

    \( = \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {\frac{1}{{1 + \frac{1}{4x}}}} \right)\left( {\frac{{ - 1}}{{{4x^2}}}} \right)}}{{ - 1/{x^2}}} = \frac{1}{4}\)

     

    Putting this in equation (1), we can write:

    \({e^{\mathop {\lim }\limits_{x \to \infty } x\;In\;\left( {1 + \frac{1}{x}} \right)}} = {e^\frac{1}{4}}\)

    \(\therefore \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{4x}} \right)^x} = e^\frac{1}{4}\)
  • Question 5
    1 / -0
    The value of \(\begin{array}{*{20}{c}}{{\rm{lim}}}\\{h \to 0}\end{array}\frac{{{2^{8cosh}}}}{{8h}}\left[ {{{\sin }^8}\left( {\frac{\pi }{6} + h} \right) - {{\sin }^8}\frac{\pi }{6}} \right]\)
    Solution

    \(L=\begin{array}{*{20}{c}}{{\rm{lim}}}\\{h \to 0}\end{array}\frac{{{2^{8cosh}}}}{{8h}}\left[ {{{\sin }^8}\left( {\frac{\pi }{6} + h} \right) - {{\sin }^8}\frac{\pi }{6}} \right]\)

    put h = 0

    \(L = \;\frac{{{2^{8cos0}}}}{{8 \times 0}}\left[ {{{\sin }^8}\left( {\frac{\pi }{6} + 0} \right) - {{\sin }^8}\frac{\pi }{6}} \right]\)

    \(L = \frac{0}{0}\)

    It is of the form

    Apply L Hospital

    \(L\; = \begin{array}{*{20}{c}}{{\rm{lim}}}\\{h \to 0}\end{array}\frac{{{2^{8cosh}}\left[ {8{{\sin }^7}\left( {\frac{\pi }{6} + h} \right){\rm{cos}}\left( {\frac{{\rm{\pi }}}{6}{\rm{\;}}} \right) - 0} \right] + \left[ {{{\sin }^8}\left( {\frac{\pi }{6} + h} \right) - {{\sin }^8}\frac{\pi }{6}} \right]\;{2^{8cosh\;}}\left( { - sinh} \right)}}{{8 \times 1}}\)

    \(L\; = \frac{{{2^{8cos0}}\left[ {8{{\sin }^7}\left( {\frac{\pi }{6}} \right){\rm{cos}}\left( {\frac{{\rm{\pi }}}{6}{\rm{\;}}} \right)]{\rm{\;}}} \right] + 0}}{8}\)

    \(L\; = \;\;\frac{{{2^8}\left[ {8 \times {{\left( {\frac{1}{2}} \right)}^7} \times \left( {\frac{{\surd 3}}{2}} \right)} \right]}}{8}\)

    \(L\; = \surd 3\;\)
  • Question 6
    1 / -0

    Consider a function g(x) continuous at x = 0 where

    \(g\left( x \right) = \frac{{({{128}^x} - {4^x})}}{{{a^x} - 1}}\;for\;x \ne 0\)

    \( = 5\;for\;x = 0\)

    What is the value of a?
    Solution

    using L Hospital's

    \(\mathop {\lim }\limits_{x \to 0}\frac{{128^xlog128 - 4^xlog4}}{{a^xloga}} =5\)

    \( \frac{128^0{log128 - 4^0log4}}{{a^0loga}} =5\)

    \( \frac{{log128 - log4}}{{loga}} = 5\)

    \(5loga = \log \left( {\frac{{128}}{4}} \right)\)

    \(5loga = \log \left( 2^{5} \right)\)

    \(5loga = 5\log \left( 2 \right)\)

    ∴ a = 2

  • Question 7
    1 / -0
    What is the value of \(f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{x + {x^2} + {x^3} + {x^4} + \ldots + {x^n} - n}}{{x - 1}}\)
    Solution

    \(f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{x + {x^2} + {x^3} + {x^4} + \ldots + {x^n} - n}}{{x - 1}}\)

    \(f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{x + {x^2} + {x^3} + {x^4} + \ldots + {x^n} - (1+1+1+1+..n)}}{{x - 1}}\)

    \(f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {\frac{{x - 1}}{{x - 1}} + \frac{{{x^2} - 1}}{{x - 1}} + \frac{{{x^3} - 1}}{{x - 1}} + \frac{{{x^4} - 1}}{{x - 1}} + \ldots } \right)\)

    \(f\left( x \right) = \left( {1 + 2 + 3 + 4 + \ldots } \right)\)

    \(f\left( x \right) = \frac{{n\left( {n + 1} \right)}}{2}\)

  • Question 8
    1 / -0
    Consider the function f(x) = |x| in the interval -1 ≤ x ≤ 1. At the point x =0, f(x) is
    Solution

    Concept:

    A function f(x) is continuous at x = a if,

    Left limit = Right limit = Function value = Real and finite

    A function is said to be differentiable at x =a if,

    Left derivative = Right derivative = Well defined

    Calculation:

    Given:

    f(x) = |x|

    |x| = x for x ≥ 0

    |x|= -x for x < 0

    At x = 0

    Left limit = 0, Right limit = 0, F(0) = 0

    As

    Left limit = Right limit = Function value = 0

    |X| is continuous at x = 0.

    Now

    Left derivative (at x = 0) = -1

    Right derivative (at x = 0) = 1

    Left derivative ≠ Right derivative

    ∴ |x| is not differentiable at x = 0

  • Question 9
    1 / -0
    If \(p = \begin{array}{*{20}{c}} {lim}\\ {x \to 0} \end{array}\;{\left( {1 + {{\tan }^2}\sqrt x } \right)^{\frac{1}{{2x}}}}\) Find ln p
    Solution

    Concept:

    If \(\begin{array}{*{20}{c}} {lim}\\ {x \to a} \end{array}\;f\left( x \right) = 1\;\& \;\begin{array}{*{20}{c}} {lim}\\ {x \to a} \end{array}\;g\left( x \right) = \infty\)

    i.e. 1 form

    then, \(\begin{array}{*{20}{c}} {lim}\\ {x \to a} \end{array}{\left[ {f\left( x \right)} \right]^{g\left( x \right)}}\)

    \({e^{\begin{array}{*{20}{c}} {lim}\\ {x \to a} \end{array}}}\;\phi \left( x \right)\left[ {f\left( x \right) - 1} \right]a\)

    \(\begin{array}{*{20}{c}} {lim}\\ {x \to 0} \end{array}\;f\left( x \right) = 1 + {\tan ^2}\sqrt x = 1\)

    \(\begin{array}{*{20}{c}} {lim}\\ {x \to 0} \end{array}\;g\left( x \right) = \frac{1}{{2x}} = \infty\)

    \({e^{\begin{array}{*{20}{c}} {lim}\\ {x \to 0} \end{array}}}\frac{1}{{2x}}\left[ {1 + {{\tan }^2}\sqrt x - 1} \right]\)

    \(p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left[ {\frac{{\tan \left( {\sqrt x } \right)}}{{\sqrt x }}} \right]}^2}}}\)

    p = e1/2

    \(\ln p = \frac{1}{2}\)

  • Question 10
    1 / -0
    Find the value of \(\mathop {{\rm{lim}}}\limits_{x \to 0\;} \frac{{{{({5^x} - 1)}^4}}}{{({7^x} - 1).sinx.\;{\rm{log}}\left( {1 + x} \right).tanx}}\)
    Solution

    \(let\;y = \mathop {{\rm{lim}}}\limits_{x \to 0\;} \frac{{{{({5^x} - 1)}^4}}}{{({7^x} - 1).sinx.\;{\rm{log}}\left( {1 + x} \right).tanx}}\)

    Since x → 0 ∴ x4 → 0

    Divide number and denominator by x4

    \(\mathop {{\rm{lim}}}\limits_{x \to 0\;} \frac{{\frac{{{{\left( {{5^x} - 1} \right)}^4}}}{{{x^4}}}}}{{\;\frac{{({7^x} - 1).sinx.\;{\rm{log}}\left( {1 + x} \right).tanx}}{{{x^4}}}\;}}\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{a^x} - 1}}{x} = lo{g_e}a\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{sinx}}{x} = 1\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{tanx}}{x} = 1\)

    \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{1 + logx}}{x} = 1\)

    \(y = \frac{{{{(\log 5)}^4}\;}}{{log7}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now