Self Studies

Engineering Mathematics Test 5

Result Self Studies

Engineering Mathematics Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of ‘C’ of the Cauchy’s mean value theorem for f(x) = ex and g(x) = e-x in [2, 3] is _____.
    Solution

    Explanation:

    Given:

    f(x) = ex, g(x) = e-x

    Now,

    derivative of f(x) i.e. f(x) = ex

    derivative of g(x) i.e. g(x) = - ex

    range is given as [2, 3], that is, a = 2 and b = 3

    here, f(x) and g(x) are differentiable and continuous and derivative of g(x) is not equal to 0.

    They are satisfying the conditions of Cauchy’s mean value theorem.

    Now,

    Consider it is in interval of [a, b].

    \(\frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( b \right) - f\left( a \right)}}{{g\left( b \right) - g\left( a \right)}}\)

    \(\frac{{{e^c}}}{{ - {e^{ - c}}}} = \frac{{{e^b} - {e^a}}}{{{e^{ - b}} - \;{e^{ - a}}}}\)

    \(- {e^{2c}} = \frac{{{e^3} - {e^2}}}{{{e^{ - 3}} - \;{e^{ - 2}}}} - \; = \; - {e^{3 + 2}}\)

    c = ½ (2 + 3) = 5/2 = 2.5
  • Question 2
    1 / -0

    Consider a function g(x) = x.cos x that satisfies the following equation g”(x) + g(x) + k sin x = 0. What is the value of k?

    Solution

    Concept:

    \(\frac{d}{{dx}}\left( {f\left( x \right).g\left( x \right)} \right) = f\left( x \right)g'\left( x \right) + f'\left( x \right)g\left( x \right)\)

    Calculation:

    f(x) = x cos x   (1)

    f'(x) = -xsinx + cosx

    f''(x) = -(xcosx + sinx) - sinx 

    ∴ f''(x) = -xcosx - 2sinx  (2)

    g”(x) + g(x) + k sin x = 0

    Substituting the value from (1) and (2)

    (-xcosx - 2sinx ) +  x cos x +  k sin x = 0

    - 2sinx + k sin x = 0

    sinx (k - 2) = 0

    ∴ sin x = 0 OR k - 2 = 0

    \(\sin {\rm{x}} = \left( {{\rm{n}} } \right)\left( {\frac{{\rm{\pi }}}{2}} \right){\rm{\;where\;n}} = 0,1,{\rm{\;}}2,3,4 \ldots {\rm{\;}}\)

    Since value of k is asked

    Therefore, value of k is 2
  • Question 3
    1 / -0

    Given the following statements about a function \(f:R\rightarrow R\), select the right option:

    P: If \(f(x)\) is continuous at \(x=x_0\), then it is also differentiable at \(x=x_0\)

    Q: If \(f(x)\) is continuous at \(x=x_0\), then it may not be differentiable at \(x=x_0\)

    R: If \(f(x)\) is differentiable at \(x=x_0\), then it is also continuous at \(x=x_0\)

    Solution

    The following properties are true in calculus:

    • If a function is differentiable at any point, then it is necessarily continuous at the point.
    • But the converse of this statement is not true i.e. continuity is a necessary but sufficient condition for the Existence of a finite derivative.
    • Differentiability implies Continuity
    • Continuity does not necessarily imply differentiability.

    Hence,

    Statement P is wrong.

    Statement Q is right

    Statement R is Right

  • Question 4
    1 / -0
    Consider a function f(y) = y3 - 7y2 + 5 given on interval [p, q]. If f(y) satisfies hypothesis of Rolle’s theorem and p = 0 then what is the value of q?
    Solution

    f(y) = y3 - 7y2 + 5

    The auxiliary function is f1(y) = y3 - 7y2 = y2(y - 7)

    f(0) = f(7)=5.

    The function f(x) is everywhere continuous and differentiable because it is a cubic polynomial.

    Consequently, it satisfies all the conditions of Rolle’s theorem on the interval [0,7].

    Therefore the value q is 7.

  • Question 5
    1 / -0
    If \(f\left( x \right) = {x^3} - 3x - 1\) is continuous in the closed interval \(\left[ {\frac{{13}}{7}, - \frac{{11}}{7}} \right]\) and f’(x) exists in the open interval \(\left( {\frac{{13}}{7}, - \frac{{11}}{7}} \right)\) then find the value of c such that it lies in \(\left( {\frac{{13}}{7}, - \frac{{11}}{7}} \right)?\)
    Solution

    Since given function is continuous and differentiable then by Lagrange’s Mean-Value Theorem.

    \(f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\)

    \(a = - \frac{{11}}{7},\;b = \frac{{13}}{7}\)

    \(f\left( x \right) = {x^3} - 3x - 1\)

    \(f'\left( x \right) = 3{x^2} - \;3\)

    \({f^{'}}\left( c \right) = 3{c^2} - \;3\)

    \(f\left( b \right) = {\left( { - \frac{{11}}{7}} \right)^3} - 3\left( { - \frac{{11}}{7}} \right) - 1 = \; - \frac{{57}}{{343}}\)

    \(f\left( a \right) = {\left( {\frac{{13}}{7}} \right)^3} - 3\left( {\frac{{13}}{7}} \right) - 1 = \; - \frac{{57}}{{343}}\)

    \(3{c^2} - \;3 = \frac{{ - \;\frac{{57}}{{343}} - \left( { - \;\frac{{57}}{{343}}} \right)}}{{ - \frac{{11}}{7} - \frac{{13}}{7}}}\)

    \(3{c^2} - \;3 = 0\)

    \({c^2} = 1\)

    \(\therefore c\; = \pm 1\)
  • Question 6
    1 / -0

    What is the minimum value on the interval [4, 5].of the below given function?

    f(x) = 3x3 – 40.5x2 + 180x + 7

    Solution

    f(x) = 3x3 – 40.5x2 + 180x + 7

    f’(x) = 9x2 – 81x + 180 = 0

    put f’(x) = 0 to find the point at which maximum and minimum value exists

    9x2 – 81x + 180 = 0

    x2 – 9x + 20 = 0

    (x – 5)(x – 4 ) = 0

    ∴ x = 5 or x =4

    Interval [4, 5]

    f'’(x) = 2x – 9

    put x = 4

    f’’(x) = -1 < 0 (maximum value might exist)

    put x = 5

    f’’(x) = 1 > 0 (minimum value might exist)

    Also check border values:

    value of x

    f(x)

     

    4

     3x3 – 40.5x2 + 180x + 7 = 271

    Maximumvalue

    5

     3x3 – 40.5x2 + 180x + 7 = 269.5

    Minimum value


    The minimum value is 269.5

  • Question 7
    1 / -0

    Let the function \(f\left( \theta \right) = \left| {\begin{array}{*{20}{c}}{\sin \theta }&{\cos \theta }&{\tan \theta }\\{\sin \left( {\frac{\pi }{6}} \right)}&{\cos \left( {\frac{\pi }{6}} \right)}&{\tan \left( {\frac{\pi }{6}} \right)}\\{\sin \left( {\frac{\pi }{3}} \right)}&{\cos \left( {\frac{\pi }{3}} \right)}&{\tan \left( {\frac{\pi }{3}} \right)}\end{array}} \right|\)

    Where \(\theta \in \left[ {\frac{\pi }{6},\frac{\pi }{3}} \right]\) and f’(θ) denote the derivative of f with respect to θ. Which of the following statements is/are TRUE?

    (I) There exists \(\theta \in \left( {\frac{\pi }{6},\frac{\pi }{3}} \right)\) such that f’(θ) = 0

    (II) There exists \(\theta \in \left( {\frac{\pi }{6},\frac{\pi }{3}} \right)\) such that f’(θ) ≠ 0

    Solution

    Rolle's theorem.

    To apply Rolle's theorem following 3 conditions should be satisfied:

    f(x) should be continuous in interval [a, b],

    f(x) should be differentiable in interval (a, b), and

    f(a)=f(b)

    If these 3 conditions are satisfied simultaneously then, there exists at least one ′x′ such that f′(x)=0

    Explanation:

    Statement I: There exists \(\theta \in \left( {\frac{\pi }{6},\frac{\pi }{3}} \right)\) such that f’(θ) = 0

    For the given question, it satisfies all the three conditions, therefore there exists at least one θ that gives f′(θ)=0

    Therefore, statement II is true

    Statement II: There exists \(\theta \in \left( {\frac{\pi }{6},\frac{\pi }{3}} \right)\) such that f’(θ) ≠ 0  

    The given function is also not a constant function therefore for some θ, f′(θ) ≠ 0

    Therefore, statement II is true
  • Question 8
    1 / -0
    Find the value of ‘c’ lying between a = 0 and b = ½ in the Mean Value Theorem for the function f(x) = x(x - 1)(x - 2)
    Solution

    For Lagrange’s mean value theorem, there exists at least one real number ‘c’ in (a, b) such that

    \(f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\)     ---(1)

    Now,

    f(a) = f(0) = 0

    \(f\left( b \right) = f\left( {\frac{1}{2}} \right) = \frac{1}{2}\left( {\frac{1}{2} - 1} \right)\left( {\frac{1}{2} - 2} \right) = \frac{3}{8}\)

    \(f'\left( x \right) = x\left( {{x^2} - 3x + 2} \right) = {x^3} - 3{x^2} + 2x\)

    f'(x) = 3x2 – 6x + 2

    f’(c) = 3c2 – 6c + 2

    Put in equation (1)

    \(3{c^2} - 6c + 2 = \frac{{\frac{3}{8} - 0}}{{\frac{1}{2} - 0}}\)

    \(3{c^2} - 6c + 2 = \frac{3}{4}\)

    12c2 – 24c + 8 = 3

    12c2 – 24c + 5 = 0

    \(c = \frac{{24 \pm \sqrt {{{24}^2} - 12 \times 5 \times 4} }}{{2 \times 12}}\)

    c = 1 ± 0.764 = 1.764 or 0.236

    But, c = 0.236, since it only lies between 0 and 1/2

  • Question 9
    1 / -0
    If f(x) is differentiable and g’(x) ≠ 0 such that f(1) = 4, f(2) = 16, f’(x) = 8g’(x) and g(2) = 4 then what is the value of g(1)?
    Solution

    By Cauchy's Mean Value theorem we should have

    \(\rm \frac {f'(c)}{g'(c)}=\frac {f(b)-f(a)}{g(b)-g(a)}\)

    \(\frac{{f'\left( x \right)}}{{g'\left( x \right)}} = \frac{{f\left( 2 \right) - f\left( 1 \right)}}{{g\left( 2 \right) - g\left( 1 \right)}}\)

    \(\frac{{8g'\left( x \right)}}{{g'\left( x \right)}} = \frac{{16\; - 4}}{{4\; - g\left( 1 \right)}}\)

    \(\frac{{8g'\left( x \right)}}{{g'\left( x \right)}} = \frac{{16\; - 4}}{{4\; - g\left( 1 \right)}}\)

    \(8 = \frac{{12}}{{4\; - g\left( 1 \right)}}\)

    \(32\; - 8g\left( 1 \right) = 12\)

    \(8g\left( 1 \right) = 20\)

    \(\therefore g\left( 1 \right) = \frac{5}{2}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now