Self Studies

Engineering Mathematics Test 6

Result Self Studies

Engineering Mathematics Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    \(\underset{-\pi }{\overset{\pi }{\mathop \int }}\,cos\left( t \right)\cos \left( 3t \right)dt=\)
    Solution

    \(\underset{-\pi }{\overset{\pi }{\mathop \int }}\,cos\left( t \right)\cos \left( 3t \right)dt\)

    We know that, 2 cos A cos B = cos (A + B) + cos (A – B)

    \(=\frac{1}{2}\underset{-\pi }{\overset{\pi }{\mathop \int }}\,\left[ \cos \left( 4t \right)+\cos \left( -2t \right) \right]dt\)

    \(=\frac{1}{2}\left[ \frac{\sin 4t}{4}+\frac{\sin 2t}{2} \right]_{-\pi }^{\pi }=0\)

  • Question 2
    1 / -0

    Find the value of the given function f?

    \(f = \mathop \smallint \limits_0^{\sqrt {\frac{\pi }{2}} } xsin({x^2})\;dx\)

    Solution

    \(f = \mathop \smallint \limits_0^{\sqrt {\frac{\pi }{2}} } xsin({x^2})\;dx\)

    \(put\;t = \;{x^2}\)

    \(dt = 2xdx\)

    \(\therefore \frac{{dt}}{2} = xdx\)

    \(when\;x = 0\;then\;t = 0\)

    \(when\;x = \sqrt {\frac{\pi }{2}} \;then\;t = \frac{\pi }{2}\)

    \(f = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{{\rm{sin}}\left( t \right)dt}}{2}} \right)\)

    \(f = \; - \frac{1}{2}\left[ {\cos \left( {\frac{\pi }{2}} \right) - \cos (0)\;} \right]\)

    \(f = \; - \frac{1}{2}\left[ {0\; - 1} \right]\)

    \(f = \;\frac{1}{2}\)

  • Question 3
    1 / -0
    The value of the integral \(\mathop \smallint \limits_0^3 \frac{{2x}}{{{{\left( {1 - {x^2}} \right)}^{2/3}}}}dx\) is
    Solution

    Let \(I = \mathop \smallint \limits_0^3 \frac{{2x}}{{{{\left( {1 - {x^2}} \right)}^{2/3}}}}dx\)

    The given integral is undefined at x = 1. So, we can split the above integral as follows.

    \(= \mathop \smallint \limits_0^1 \frac{{2x}}{{{{\left( {1 - {x^2}} \right)}^{2/3}}}}dx + \mathop \smallint \limits_1^2 \frac{{2x}}{{{{\left( {1 - {x^2}} \right)}^{2/3}}}}dx\)

    \(= \left[ { - 3{{\left( {1 - {x^2}} \right)}^{1/3}}} \right]_0^1 + \left[ { - 3{{\left( {1 - {x^2}} \right)}^{1/3}}} \right]_1^3\)

    = [0 – (- 3)] + [-3(-2) – 0] = 9
  • Question 4
    1 / -0
    The value of \(\mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx\) is
    Solution

    \(\begin{array}{l} \mathop \smallint \limits_a^b f\left( x \right)dx = \mathop \smallint \limits_a^b f\left( {a + b - x} \right)dx\\ I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{\sqrt {\sin x} }}{{\sqrt {\sin x} + \sqrt {\cos x} }}dx\;\_\_\_\left( 1 \right) \end{array}\)

    \(I = \mathop \smallint \limits_a^{\frac{\pi }{2}} \frac{{\sqrt {\sin \left( {\frac{\pi }{2} - x} \right)} }}{{\sqrt {\sin \left( {\frac{\pi }{2} - x} \right)} + \sqrt {\cos \left( {\frac{\pi }{2} - x} \right)} }}d\)

    \(I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{\sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}dx\;\_\_\left( 2 \right)\)

    Adding both:

    \(\begin{array}{l} 2I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}dx = \mathop \smallint \limits_0^{\frac{\pi }{2}} 1\;dx = \frac{\pi }{2}\\ I = \frac{\pi }{4} \end{array}\)  

  • Question 5
    1 / -0
    \(I = \mathop \smallint \limits_0^\infty \frac{{dx}}{{{{\left( {{x^2} + 1} \right)}^2}}}\) has the value
    Solution

    \(I = \mathop \smallint \limits_0^\infty \frac{{dx}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)

    Put x = tan θ

    ⇒ dx = sec2 θ dθ

    Limits will be: 0 to π/2

    \(I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{{{\sec }^2}\theta }}{{{{\left( {ta{n^2}\theta + 1} \right)}^2}}}d\theta\)

    \(= \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{{{\sec }^2}\theta }}{{{{\left( {{{\sec }^2}\theta } \right)}^2}}}d\theta\)

    \(= \mathop \smallint \limits_0^{\frac{\pi }{2}} {\cos ^2}\theta d\theta\)

    \(= \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{1 + \cos 2\theta }}{2}d\theta\)

    \(= \frac{1}{2}\left[ {\theta + \frac{1}{2}\sin 2\theta } \right]_0^{\frac{\pi }{2}} = \frac{\pi }{4} = 0.785\)
  • Question 6
    1 / -0

    The value of \(\mathop \smallint \nolimits_0^{\frac{\pi }{2}} {\sin ^9}xdx\;\)is ____.

    Note: correct upto 2 decimal places.

    Solution

    Concept:

    \(\;\mathop \smallint \nolimits_0^{\frac{\pi }{2}} {\sin ^n}xdx = \mathop \smallint \nolimits_0^{\frac{\pi }{2}} {\cos ^n}x\;dx \)

    If n is even, \(\frac{{\left( {n - 1} \right)\left( {n - 3} \right)\left( {n - 5} \right) \ldots \ldots }}{{n\left( {n - 2} \right)\left( {n - 4} \right)\left( {n - 6} \right) \ldots ..}} \times \frac{\pi }{2}\;\)

    If n is odd, \(\frac{{\left( {n - 1} \right)\left( {n - 3} \right)\left( {n - 5} \right)}}{{n\left( {n - 2} \right)\left( {n - 4} \right)\left( {n - 6} \right)}} \times 1\)                                            
    Here n = 7, means n is odd,

    Therefore, \(\mathop \smallint \nolimits_0^{\frac{\pi }{2}} {\sin ^9}xdx = \;\frac{{\left( {9 - 1} \right)\left( {9 - 3} \right)\left( {9 - 5})({9-7} \right)}}{{9\left( {9 - 2} \right)\left( {9 - 4} \right)\left( {9 - 6} \right)(9-8)}} \times 1 = 0.2031\)

  • Question 7
    1 / -0
    If \(f\left( x \right) = A~\cos\left( {\frac{{2\pi x}}{5}} \right) + C,\;f'\left( {\frac{{15}}{4}} \right) = \frac{1}{2}\) and \(\mathop \smallint \nolimits_0^5 f\left( x \right)dx = \frac{{A\pi }}{2}\) then the value of A and C are respectively.
    Solution

    Explanation:

    \({\rm{f}}\left( {\rm{x}} \right) = {\rm{Acos}}\left( {\frac{{2{\rm{\pi x}}}}{5}} \right) + {\rm{C}}\)

    \({\rm{f'}}\left( {\rm{x}} \right) = - {\rm{Asin}}\left( {\frac{{2{\rm{\pi x}}}}{5}} \right) \times \frac{{2{\rm{\pi }}}}{5}\)

    \({\rm{f'}}\left( {\frac{{15}}{4}} \right) = - {\rm{Asin}}\left( {\frac{{2{\rm{\pi }}\left( {\frac{{15}}{4}} \right){\rm{\;}}}}{5}} \right) \times \frac{{2{\rm{\pi }}}}{5}\)

    \({\rm{f'}}\left( {\frac{{15}}{4}} \right) = - {\rm{A}}\left( { - 1} \right)\left( {\frac{{2{\rm{\pi }}}}{5}} \right) = \frac{1}{2}{\rm{\;}}\)

    \(\therefore {\rm{A}} = \frac{5}{{4{\rm{\pi }}}}\)

    \(\mathop \smallint \nolimits_0^5 {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{A\pi }}{2}\)

    \(f\left( x \right) = A~\cos\left( {\frac{{2\pi x}}{5}} \right) + C\)

    \(\mathop \smallint \nolimits_0^5 \left( {\;\frac{5}{{4{\rm{\pi }}}}{\rm{cos}}\left( {\frac{{2{\rm{\pi x}}}}{5}} \right) + {\rm{C\;}}} \right){\rm{dx\;}} = \frac{{\left( {\frac{5}{{4\pi }}} \right)\pi }}{2}\)

    \(\left[ {\frac{5}{{4\pi }}\left\{ {\sin \left( {\frac{{2\pi x}}{5}} \right) \times \frac{5}{{2\pi }}} \right\} + Cx} \right]_0^5 = \frac{5}{8}\)

    \(5C = \frac{5}{8}\)

    \(C = \frac{1}{8}\)

  • Question 8
    1 / -0

    The value of the integral \(\underset{a}{\overset{\text{ }\!\!b\!\!\text{ }}{\mathop \int }}\,\text{x}{{\cos }^{2}}\text{xdx}\) is\(\frac{{{\pi }^{2}}}{4}. \)

    What is the correct value of a and b?

    Solution

    Property:

    \(\mathop{\int }_{\text{a}}^{\text{b}}\text{f}\left( \text{x} \right)\text{ }\!\!~\!\!\text{ dx }\!\!~\!\!\text{ }=\mathop{\int }_{\text{a}}^{\text{b}}\text{f}\left( \text{a}+\text{b}-\text{x} \right)\text{ }\!\!~\!\!\text{ dx}\)

    Calculation:

    \(\text{I}=\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\text{x }\!\!~\!\!\text{ }{{\left( \cos \text{x} \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}=\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\left( \text{ }\!\!\pi\!\!\text{ }-\text{x} \right)\text{ }\!\!~\!\!\text{ }{{\left( \cos \left( \text{ }\!\!\pi\!\!\text{ }-\text{x} \right) \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}\)

    \(\text{I}=\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\text{x }\!\!~\!\!\text{ }{{\left( \cos \text{x} \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}=\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\left( \text{ }\!\!\pi\!\!\text{ }-\text{x} \right)\text{ }\!\!~\!\!\text{ }{{\left( \cos \left( \text{ }\!\!\pi\!\!\text{ }-\text{x} \right) \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}\)

    \(\text{I}=\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\pi\!\!\text{ }\!\!~\!\!\text{ }{{\left( \cos \text{x} \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}-\text{ }\!\!~\!\!\text{ }\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\text{x }\!\!~\!\!\text{ }{{\left( \cos \text{x} \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}\)

    \(\text{I}=\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\pi\!\!\text{ }\!\!~\!\!\text{ }{{\left( \cos \text{x} \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}-\text{ }\!\!~\!\!\text{ I}\)

    \(2\times \text{I}=\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\pi\!\!\text{ }\!\!~\!\!\text{ }{{\left( \cos \text{x} \right)}^{2}}\text{ }\!\!~\!\!\text{ dx}=\text{ }\!\!\pi\!\!\text{ }\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\frac{1+\cos 2\text{x}}{2}\text{ }\!\!~\!\!\text{ dx}\)

    \(2\times \text{I}=\text{ }\!\!\pi\!\!\text{ }\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\frac{1}{2}\text{ }\!\!~\!\!\text{ dx}+\text{ }\!\!\pi\!\!\text{ }\mathop{\int }_{0}^{\text{ }\!\!\pi\!\!\text{ }}\frac{\cos 2\text{x}}{2}\text{ }\!\!~\!\!\text{ dx}\)

    \(2\times \text{I}=\text{ }\!\!~\!\!\text{ }\frac{\text{ }\!\!\pi\!\!\text{ }}{2}\left( \text{ }\!\!\pi\!\!\text{ }-0 \right)+\frac{1}{2}\left( \sin 2\text{ }\!\!\pi\!\!\text{ }-\sin 0 \right)=\frac{{{\text{ }\!\!\pi\!\!\text{ }}^{2}}}{2}\)

    \(\therefore \mathbf{I}=\mathop{\int }_{0}^{\mathbf{\pi }}\mathbf{x}~{{\left( \cos \mathbf{x} \right)}^{2}}~\mathbf{dx}=\frac{{{\mathbf{\pi }}^{2}}}{4}\)

  • Question 9
    1 / -0

    If \(\mathop \smallint \limits_0^1 \frac{{{e^t}}}{{1 + t}}dt = a\), then \(\mathop \smallint \limits_0^1 \frac{{{e^t}}}{{{{\left( {1 + t} \right)}^2}}}dt = \)

    Solution

    \(\mathop \smallint \limits_0^1 \frac{{{e^t}}}{{{{\left( {1 + t} \right)}^2}}}dt\)

    By integrating by parts

    \( = {e^t}\mathop \smallint \limits_0^1 \frac{{dt}}{{{{\left( {1 + t} \right)}^2}}} - \mathop \smallint \limits_0^1 {\left( {{e^t}.\smallint \frac{{dt}}{{{{\left( {1 + t} \right)}^2}}}} \right)^2}dt\)

    \( = {e^t}\mathop \smallint \limits_0^1 \frac{{dt}}{{{{\left( {1 + t} \right)}^2}}} - \mathop \smallint \limits_0^1 {e^t}.\left( {\frac{{ - 1}}{{1 + t}}} \right)dt\)

    Given that,

    \(\mathop \smallint \limits_0^1 {e^t}\left( {\frac{{ 1}}{{1 + t}}} \right)dt = a\)

    \( = \left[ {{e^t}.\frac{{ - 1}}{{\left( {1 + t} \right)}}} \right]_0^1 + a\)

    \( = 1 - \frac{e}{2} + a\)

  • Question 10
    1 / -0
    What is the value of \(\mathop \smallint \limits_0^{\frac{\pi }{2}} {\sin ^7}x{\cos ^5}x dx\)?
    Solution

    \(let\;I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {\sin ^7}x{\cos ^5}xdx\)

    \(It\;is\;of\;the\;form:\mathop \smallint \limits_0^{\frac{\pi }{2}} {\sin ^m}x{\cos ^{\rm{n}}}xdx\)

    \(I = \frac{{\left( {m - 1} \right)\left( {m - 3} \right)\left( {m\; - \;5} \right) \ldots 1\; \times \left( {n\; - 1} \right)\left( {n - 3} \right)\; \ldots 1}}{{\left( {m + n} \right)\left( {m + n - 2} \right)\left( {m + n - 4} \right) \ldots 1}}\)

    \(I = \frac{{6 \times 4 \times 2 \times 4 \times 2}}{{12 \times 10 \times 8 \times 6 \times 4 \times 2}}\)

    \(I = \frac{1}{{120}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now