Data:
\(p\left( P \right) = \frac{1}{4}\)
\(P\left( {\frac{P}{Q}} \right) = \;\frac{1}{2}\) , \(P\left( {\frac{Q}{P}} \right) = \;\frac{1}{3}\)
Formula
\(P\left( {\frac{A}{B}} \right) = \;\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\)
Calculation:
\(P\left( {\frac{Q}{P}} \right) = \;\frac{{P\;\left( {P \cap Q} \right)}}{{P\left( P \right)}},\;\;\)
\(\frac{1}{3} = \;\frac{{P\left( {P \cap Q} \right)}}{{\frac{1}{4}}}\) ,
\(P\left( {P \cap Q} \right) = \;\frac{1}{{12}}\)
Also, \(P\left( {\frac{P}{Q}} \right) = \frac{{P\;\left( {P \cap Q} \right)}}{{P\left( Q \right)}},\;\;\)
\(\frac{1}{2} = \frac{{\frac{1}{{12}}}}{{P\left( Q \right)}}\) ,
\(P\left( Q \right) = \frac{1}{6}\)
Required probability, \(P\left( {\frac{{P'}}{{Q'}}} \right) = \frac{{P\left( {P' \cap Q'} \right)}}{{P\left( {Q'} \right)}}\)
\(= \frac{{P{{\left( {P \cup Q} \right)}'}}}{{1 - P\left( Q \right)}}\; = \frac{{1 - P\left( {P \cup Q} \right)}}{{1 - P\left( Q \right)}}\)
\(= \frac{{1 - \left( {P\left( P \right) + P\left( Q \right) - P\;\left( {P \cap Q} \right)} \right)}}{{1 - P\left( Q \right)}}\;\)
\(= \frac{{1 - \left( {\frac{1}{4} + \frac{1}{6} - \frac{1}{{12}}} \right)}}{{1 - \frac{1}{6}}}\)
\(= \frac{{\frac{8}{{12}}}}{{\frac{5}{6}}} = \frac{4}{5}\)