Concept:
The Fourier Series Coefficient of a discrete time Periodic sequence is given by:
\({{c}_{K}}=\frac{1}{N} \sum_{n=0}^{N-1}x\left( n \right){{e}^{\frac{-j2\pi kn}{N}}}\)
Where N = Period of the sequence.
Calculation:
Given, x (n) = {1, 1, 0, 0} and N = 4
So, \({{c}_{k}}=\frac{1}{N}~\sum_{n=0}^{N-1}x\left( n \right){{e}^{-jk\omega n}}=\frac{1}{N}\sum_{n=0}^{N-1}x\left( n \right){{e}^{\frac{-jK2\pi n}{N}~}}\)
With N = 4,
\(\Rightarrow {{c}_{k}}=\frac{1}{4}\sum_{n=0}^{N-1}x\left( n \right){{e}^{\frac{-j2\pi kn}{4}}}=\frac{1}{4}\sum_{n=0}^{N-1}x\left( n \right){{e}^{\frac{-j\pi kn}{2}}}\)
\({{c}_{k}}=\frac{1}{4}\left[ x\left( 0 \right)+x\left( 1 \right){{e}^{\frac{-j\pi k}{2}}}+x\left( 2 \right){{e}^{\frac{-j\pi k\left( 2 \right)}{2}}}+x\left( 3 \right){{e}^{\frac{-j\pi k\left( 3 \right)}{2}}} \right]\)
With, x(0) = 1, x(1) = 1, x(2) = 0 and x(3) = 0.
\({{c}_{k}}=\frac{1}{4}\left[ 1+1.{{e}^{\frac{-j\pi k}{2}}}+0+0 \right]\)
\({{c}_{k}}=\frac{1}{4}\left[ 1+{{e}^{\frac{-j\pi k}{2}}} \right]\)
We are asked to calculate \(c_3^*\)
Putting k = 3.
\({{c}_{3}}=\frac{1}{4}\left[ 1+{{e}^{\frac{-j3\pi }{2}}} \right]\)
\(=\frac{1}{4}\left( 1+\cos \frac{3\pi }{2}-jsin\frac{3\pi }{2} \right)\)
\(=\frac{1}{4}\left( 1+j \right)\)
So, \(c_{3}^{*}=\frac{1}{4}\left( 1-j \right)\)
Option (3) is correct.