Concept:
The DTFT of a discrete sequence is a complex quantity, which can be defined as:
X(ejω) = Real {X(ejω)} + Img. {X(ejω)}
Where the Real {X(ejω)} is nothing but the DTFT of the even part of the signal.
Proof:
A signal can be written as the sum of the even part and odd part, is:
\({x_e}\left( n \right) = \frac{{x\left( n \right) + x\left( { - n} \right)}}{2}\)
\({x_0}\left( n \right) = \frac{{x\left( n \right) - x\left( { - n} \right)}}{2}\)
\(x\left( -n \right)\mathop \leftrightarrow \limits^{DTFT} X\left( {{e^{ - jω }}} \right)\)
Taking the Fourier transform of the even part, we get:
\({X_e}\left( {{e^{jω }}} \right) = \frac{{X\left( {{e^{jω }}} \right) + X\left( {{e^{ - jω }}} \right)}}{2}\)
This can be written as:
\({X_e}\left( {{e^{jω }}} \right) = \frac{{R\dot e\left\{ {X\left( {{e^{jω }}} \right)} \right\} + jIm\left\{ {X\left( {{e^{jω }}} \right)} \right\} + Re\left\{ {X\left( {{e^{jω }}} \right)} \right\} - jIm\left\{ {X\left( {{e^{jω }}} \right)} \right\}}}{2}\)
Xe(ejω) = Re{X(ejω)}
Application:
We are required to find F-1{Re{X(ejω)}} at n = 0
The inverse DTFT of Re{X(ejω)} is xe(n)
Given:
\(x\left( n \right) = \left\{ { - 1,0,1,\begin{array}{*{20}{c}} 2\\ \uparrow \end{array},1,0,1,2,1,0, - 1} \right\}\)
\(x\left( { - n} \right) = \left\{ { - 1,0,1,2,1,0,1,\begin{array}{*{20}{c}} 2\\ \uparrow \end{array},1,0, - 1} \right\}\)
xe(n) will be:
\(\frac{{x\left( n \right) + x\left( { - n} \right)}}{2} = \left\{ {\frac{{ - 1}}{2},0,\frac{1}{2},1,0,0,1,\begin{array}{*{20}{c}} 2\\ \uparrow \end{array},1,0,0,1,\frac{1}{2},0,\frac{{ - 1}}{2}} \right\}\)
∴ At n = 0, we have:
\({F^{ - 1}}\left\{ {Re\left\{ {X\left( {{e^{jw}}} \right)} \right\}} \right\} = {x_e}\left( 0 \right) = 2\)