Self Studies

Signals and Systems Test 2

Result Self Studies

Signals and Systems Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33

    If F(ω) is the Fourier transform of f(t), then which of the following is/are true?

    Solution

    F(ω) is the Fourier transform of f(t).

    f(t)

    F(ω)

    Even

    Even

    real and even

    real and even

    imaginary and even

    imaginary and even

    odd

    odd

    real and odd

    imaginary and odd

    imaginary and odd

    real and odd

  • Question 2
    2 / -0.33

    What is the signal corresponding to the following z-transform? (Where u[n] is the unit-step signal)

    \(X\left( z \right) = \frac{{6{z^2}}}{{\left( {2z - 1} \right)\left( {3z - 1} \right)}},\frac{1}{3} < \left| z \right| < \frac{1}{2}\)

    Solution

    Concept:

    The Z-transform of standard signals with their ROC are:

    \({a^n}u\left( n \right) \leftrightarrow \frac{z}{{z - a}};\left| z \right| > \left| a \right|\)

    \( - {a^n}u\left( { - n - 1} \right) \leftrightarrow \frac{z}{{z - a}};\left| z \right| < \left| a \right|\)

    Application:

    \(X\left( z \right) = \frac{{6{z^2}}}{{\left( {2z - 1} \right)\left( {3z - 1} \right)}}\)

    \( = \frac{{{z^2}}}{{\left( {z - \frac{1}{2}} \right)\left( {z - \frac{1}{3}} \right)}}\)

    \(= z[\frac{z}{{\left( {z - \frac{1}{2}} \right)\left( {z - \frac{1}{3}} \right)}}\)

    \(= z\left[ {\frac{3}{{\left( {z - \frac{1}{2}} \right)}} - \frac{2}{{\left( {z - \frac{1}{3}} \right)}}} \right]\)

    \(= \frac{{3z}}{{\left( {z - \frac{1}{2}} \right)}} - \frac{{2z}}{{\left( {z - \frac{1}{3}} \right)}}\)

    For \(\left| z \right| < \frac{1}{2},\;\frac{{3z}}{{\left( {z - \frac{1}{2}} \right)}} \leftrightarrow \; - 3{\left( {\frac{1}{2}} \right)^n}u\left[ { - n - 1} \right]\) 

    For \(\left| z \right| > \frac{1}{3},\;\frac{{2z}}{{\left( {z - \frac{1}{3}} \right)}} \leftrightarrow 2{\left( {\frac{1}{3}} \right)^n}u\left[ n \right]\) 

    \(x\left[ n \right] = - 3{\left( {\frac{1}{2}} \right)^n}u\left[ { - n - 1} \right] + 2{\left( {\frac{1}{3}} \right)^n}u\left[ n \right]\)

  • Question 3
    2 / -0.33
    Let \(X\left( {{e^{j\omega }}} \right) = 10 - 4{e^{ - j2\omega }}\). If y(t) = x(t - 2) then what is value of Y(e) at ω = π is ________
    Solution

    \(X\left( {{e^{j\omega }}} \right) = 10 - 4{e^{ - j2\omega }}\)

    y(t) = x(t - 2)

    By applying Fourier transform,

    \( \Rightarrow Y\left( {{e^{j\omega }}} \right) = {e^{ - j2\omega }}X\left( {{e^{j\omega }}} \right)\)

    \(= {e^{ - j2\omega }}\left( {10 - 4\;{e^{ - j2\omega }}} \right)\) 

    \(= 10{e^{ - j2\omega }} - 4{e^{ - j4\omega }}\) 

    \(Y\left( {{e^{j\omega }}} \right){\left. \right|_{\omega = \pi }} = Y\left( {{e^{j\pi }}} \right) = 10{e^{ - j2\left( \pi \right)}} - 4{e^{ - j4\pi }}\) 

    = 10 (cos 2π - j sin 2π) - 4(cos 4 π - j sin 4π)

    = 10(1) - 4(1) = 6

  • Question 4
    2 / -0.33
    If a 100 Hz sinusoidal signal is sampled at the rates of 140 Hz, 90 Hz, and 30 Hz, then the aliased frequencies correspond to each sampling rate will be respectively
    Solution

    Concept:

    Aliased frequency component is given by:

    fa = |fs – fm|

    fs = sampling frequency

    fm = message signal frequency

    Calculation:

    For a sampling rate of 140 Hz, since fs > fm:

    Aliased Frequency = fs - fm,               

    = 140 – 100 = 40 Hz

    For a sampling rate of 90 Hz, since fs < fm:

    Aliased Frequency = fm – fs,       

    = 100 – 90 = 10 Hz

    For a sampling rate of 30 Hz, since fs < fm:

    Aliased Frequency = fm – fs    

    = 100 – 30 = 70 Hz

  • Question 5
    2 / -0.33
    The DTFT of x[n] = 0.5n u[n] using geometric series is:
    Solution

    The Discrete-Time Fourier transform of a signal of infinite duration x[n] is given by:

    \(X\left( \omega \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\omega n}}\)

    For a signal x(n) = an u(n), the DTFT will be:

    \(X\left( \omega \right) = \mathop \sum \limits_{n = - \infty }^\infty a^nu\left[ n \right]{e^{ - j\omega n}}\)

    Since u[n] is zero for n < 0 and a constant 1 for n > 0, the above summation becomes:

    \(X\left( \omega \right) = \mathop \sum \limits_{n = 0 }^\infty a^n{e^{ - j\omega n}}\)

    \(X\left( \omega \right) = \mathop \sum \limits_{n = 0 }^\infty (a{e^{ - j\omega n})}\)   ---(1)

    The geometric series states that:

    \(\mathop \sum \limits_{n = 0 }^\infty r^n=\frac{1}{1-r}\), for 0 < r < 1

    Equation (1) can now be written as:

    \(X\left( \omega \right) =\frac{1}{1-ae^{-j\omega}}\)    ---(2)

    Application:

    Given x[n] = 0.5u[n], i.e. a = 0.5

    The DTFT of the above given sequence using Equation (2) will be:

    \(X\left( \omega \right) =\frac{1}{1-0.5e^{-j\omega}}\)

  • Question 6
    2 / -0.33
    A discrete time signal x[n] and its discrete Fourier transform X(k) related by \(x\left[ n \right]\mathop \leftrightarrow \limits^{DFS\;12} X\left( k \right)\). Another discrete series with Fourier coefficients Y(k) given as Y(k) = X(k - 4) + X(k + 4) then the corresponding sequence y[n] will be
    Solution

    Given, \(x\left[ n \right]\mathop \leftrightarrow \limits^{DFS\;12} X\left( k \right)\)

    \(\Rightarrow {\rm{\Omega }} = \frac{{2\pi }}{{12}} = \frac{\pi }{6}\)

    And Y(k) = X(k + 4) + X(k - 4)

    \(\begin{array}{l} \Rightarrow y\left[ n \right] = {e^{ - \frac{{j4\pi }}{6}n}}x\left[ n \right] + {e^{\frac{{j4\pi }}{6}n}}x\left[ n \right]\\ = 2\cos \left( {\frac{{2\pi }}{3}n} \right)x\left[ n \right] \end{array}\)

  • Question 7
    2 / -0.33
    Consider a signal y(t) = x1(t) * x2(t). If x1(t) = 2 cos 4t u(t) and x2(t) = sin 2t u(t). The value of y(t) at t = π / 2 is _______
    Solution

    y(t) = x1(t) * x2(t)

    x1(t) = (2 cos 4t) u(t)

    x2(t) = (sin 2t) u(t)

    We know convolution in time domain is multiplication in frequency domain

    So, y(t) = x1(t) * x2(t)

    y(t) = x1(s) ⋅ x2(s)

    \({x_1}\left( s \right) = \frac{{2s}}{{{s^2} + 16}},\;{x_2}\left( s \right) = \frac{2}{{{s^2} + 4}}\) 

    \(Y\left( s \right) = \frac{{4s}}{{\left( {{s^2} + 16} \right)\left( {{s^2} + 4} \right)}} = \frac{{As + B}}{{{s^2} + 16}} + \frac{{Cs + D}}{{{s^2} + 4}}\) 

    4s = (As + B) (s2 + 4) (Cs + D) (s2 + 16)

    Put s = 0 ⇒ 0 = 4B + 16D → 1)

    Put s = 1 ⇒ 4 = (A + B) (5) + (C + D) (17) → 2)

    Put s = 2 ⇒ 8 = (2A + B) (8) + (2C + D) (20) → 3)

    Put s = 3 ⇒ 12 = (3A + B) (13) + (3C + D) (25) → 4)

    Solving 1), 2), 3) and 4) we get

    A = B = 1 / 3

    C = D = -1 / 3

    \(Y\left( s \right) = \frac{1}{3}\left( {\frac{s}{{{s^2} + 4}} - \frac{s}{{{s^2} + 16}}} \right)\) 

    Applying inverse Laplace transform,

    \(y\left( t \right) = \frac{1}{3}\left( {\cos 2t-\cos 4t} \right)u\left( t \right)\) 

    \(\frac{{\left( {y\left( t \right)} \right)}}{t} = \frac{\pi }{2} = \frac{1}{3}\left( {\cos \pi - \cos 2\pi } \right)u\left( {\frac{\pi }{2}} \right)\) 

    \(= \frac{1}{3}\left( { - 1 - 1} \right) = - \frac{2}{3}\) 

    = -0.666

  • Question 8
    2 / -0.33
    The total area under the function \(x\left( t \right) = 10\;sinc\;\left( {\frac{{t + 4}}{7}} \right)\) is
    Solution

    Given signal is \(x\left( t \right) = 10\;sinc\;\left( {\frac{{t + 4}}{7}} \right)\)

    Area \( = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right)dt = \mathop \smallint \limits_{ - \infty }^\infty 10\;sinc\;\left( {\frac{{t + 4}}{7}} \right)dt\)

    \(= \mathop \smallint \limits_{ - \infty }^\infty 10\frac{{\sin \left( {\frac{{\pi \left( {t + 4} \right)}}{7}} \right)}}{{\frac{{\pi \left( {t + 4} \right)}}{7}}}dt\)

    To solve this, we can use the relation

    \(X\left( 0 \right) = {\left[ {\mathop \smallint \limits_{ - \infty }^\infty x\left( t \right){e^{ - j2\pi ft}}dt} \right]_{f \to 0}} = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right)dt\)

    The Fourier transform of the given signal x(t) is,

    \(X\left( f \right) = 70\;rect\left( {7f} \right){e^{j8\pi f}}\)

    The area = X(0) = 70

  • Question 9
    2 / -0.33

    The sequence x[n] is (0.7)n u(n) and y (n) is x (n)*x (n). Then which of the following statement(s) is/are true?

    Solution

    y(n) = x(n) * x(n)

    By taking z-transform both sides

    Y(z) = X(z) ⋅ X(z)

    x(n) = (0.7)n u(n)

    \( \Rightarrow X\left( z \right) = \left[ {\frac{1}{{1 - 0.7\;{z^{ - 1}}}}} \right]\)

    \(Y\left( z \right) = {\left( {\frac{1}{{1 - 0.7{z^{ - 1}}}}} \right)^2}\)

    We know that; \(Y\left( z \right) = \mathop \sum \nolimits_{ - \infty }^\infty y\left( n \right){z^{ - n}}\)

    \(z = 1\;;Y\left( 1 \right) = \mathop \sum \nolimits_{ - \infty }^\infty y\left( n \right)\)

    \(\mathop \sum \nolimits_{ - \infty }^\infty y\left( n \right) = Y\left( z \right){\left. \right|_{z = 1}} = {\left( {\frac{1}{{1 - 0.7}}} \right)^2} = \frac{{100}}{9} = 11.11\)

  • Question 10
    2 / -0.33
    Consider a system with frequency response of \(H\left( {j\omega } \right) = \frac{{j\omega + 2}}{{\left( {j\omega + 1} \right)\left( {j\omega + 3} \right)}}\) and suppose that the input to the system is x(t) = e-t u(t). If the output response is y(t), the value of y(1) is _______ (answer up to two decimal places)
    Solution

    Frequency response of \(H\left( {j\omega } \right) = \frac{{j\omega + 2}}{{\left( {j\omega + 1} \right)\left( {j\omega + 3} \right)}}\)

    Input to the system is x(t) = e-t u(t)

    \(X\left( {j\omega } \right) = \frac{1}{{j\omega + 1}}\)

    The output in frequency domain is given by

    \(Y\left( {j\omega } \right) = H\left( {j\omega } \right)X\left( {j\omega } \right) = \frac{{j\omega + 2}}{{\left( {j\omega + 1} \right)\left( {j\omega + 3} \right)}} \times \frac{1}{{j\omega + 1}}\)

    \( = \frac{{j\omega + 2}}{{{{\left( {j\omega + 1} \right)}^2}\left( {j\omega + 3} \right)}}\)

    By applying partial fraction method,

    \(Y\left( {j\omega } \right) = \frac{1}{4}\frac{1}{{\left( {j\omega + 1} \right)}} + \frac{1}{2}\frac{1}{{{{\left( {j\omega + 1} \right)}^2}}} + \frac{1}{4}\frac{1}{{\left( {j\omega + 3} \right)}}\)

    By applying the inverse Fourier transform,

    \(y\left( t \right) = \left[ {\frac{1}{4}{e^{ - t}} + \frac{1}{2}t{e^{ - t}} - \frac{1}{4}{e^{ - 3t}}} \right]u\left( t \right)\)

    At t = 1, y(t) = 0.263

  • Question 11
    2 / -0.33

    Let X(e) denote the Fourier transform of the signal x[n], where:

    \(x\left( n \right) = \left\{ { - 1,0,1,\begin{array}{*{20}{c}} 2\\ \uparrow \end{array},1,0,1,2,1,0, - 1} \right\}\)

    The value of F-1 {Re{X(e)}} at n = 0 will be ________. (The arrow represents the origin)
    Solution

    Concept:

    The DTFT of a discrete sequence is a complex quantity, which can be defined as:

    X(e) = Real {X(e)} + Img. {X(ejω)}

    Where the Real {X(ejω)} is nothing but the DTFT of the even part of the signal.

    Proof:

    A signal can be written as the sum of the even part and odd part, is:

    \({x_e}\left( n \right) = \frac{{x\left( n \right) + x\left( { - n} \right)}}{2}\)

    \({x_0}\left( n \right) = \frac{{x\left( n \right) - x\left( { - n} \right)}}{2}\)

    \(x\left( -n \right)\mathop \leftrightarrow \limits^{DTFT} X\left( {{e^{ - jω }}} \right)\)

    Taking the Fourier transform of the even part, we get:

    \({X_e}\left( {{e^{jω }}} \right) = \frac{{X\left( {{e^{jω }}} \right) + X\left( {{e^{ - jω }}} \right)}}{2}\)

    This can be written as:

    \({X_e}\left( {{e^{jω }}} \right) = \frac{{R\dot e\left\{ {X\left( {{e^{jω }}} \right)} \right\} + jIm\left\{ {X\left( {{e^{jω }}} \right)} \right\} + Re\left\{ {X\left( {{e^{jω }}} \right)} \right\} - jIm\left\{ {X\left( {{e^{jω }}} \right)} \right\}}}{2}\)  

    Xe(e) = Re{X(e)}

    Application:

    We are required to find F-1{Re{X(e)}} at n = 0

    The inverse DTFT of Re{X(e)} is xe(n)

    Given:

    \(x\left( n \right) = \left\{ { - 1,0,1,\begin{array}{*{20}{c}} 2\\ \uparrow \end{array},1,0,1,2,1,0, - 1} \right\}\)

    \(x\left( { - n} \right) = \left\{ { - 1,0,1,2,1,0,1,\begin{array}{*{20}{c}} 2\\ \uparrow \end{array},1,0, - 1} \right\}\)

    xe(n) will be:

    \(\frac{{x\left( n \right) + x\left( { - n} \right)}}{2} = \left\{ {\frac{{ - 1}}{2},0,\frac{1}{2},1,0,0,1,\begin{array}{*{20}{c}} 2\\ \uparrow \end{array},1,0,0,1,\frac{1}{2},0,\frac{{ - 1}}{2}} \right\}\)

    ∴ At n = 0, we have:

    \({F^{ - 1}}\left\{ {Re\left\{ {X\left( {{e^{jw}}} \right)} \right\}} \right\} = {x_e}\left( 0 \right) = 2\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now