Self Studies

Power Electronics Test 1

Result Self Studies

Power Electronics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    Due to low internal generation in GTO, the GTO has
    Solution
    • GTO being a monolithic p-n-p-n structure just like a thyristor. In particular, the p-n-p-n structure of a GTO can be thought of consisting of one p-n-p and one n-p-n transistor connected in the regenerative configuration.
    • Due to low internal generation in GTO, the GTO has both holding and latching current of a GTO are considerably higher compared to a similarly rated thyristor.
    • Since the holding current of a GTO is considerably higher than that of a thyristor anode current variation can generate serious problem because the GTO might unlatch at an inappropriate moment.
    • To avoid this problem the gate drive unit of a GTO must feed the gate terminal with a continuous “back porch” current during the entire on period of the GTO.
    • This back-porch current must be larger than the gate trigger current.
  • Question 2
    2 / -0.33
    The reverse recovery time of a diode is trr = 3 μs and the rate of fall is \(\frac{{di}}{{dt}} = 30\;A/\mu s\). The stored charge of the diode is
    Solution

    Important formulas:

    1) \({Q_{RR}} = \frac{1}{2} \times {I_{RR}} \times {t_{rr}}\)

    2) \({I_{RR}} = {\left[ {2\;{Q_{RR}}\frac{{di}}{{dt}}} \right]^{1/2}}\)

    3) \({t_{rr}} = {\left[ {\frac{{2{Q_{RR}}}}{{\frac{{di}}{{dt}}}}} \right]^{\frac{1}{2}}}\)

    Calculation:

    \({Q_{RR}} = \frac{1}{2}t_{rr}^2\;\left( {\frac{{di}}{{dt}}} \right)\)

    \( = \frac{1}{2} \times {\left( {3 \times {{10}^{ - 6}}} \right)^2} \times 30\frac{A}{{\mu s}}\;\)

    \({Q_{RR}} = 135\;\mu C\)

  • Question 3
    2 / -0.33
    A star-connected load of 20 Ω per phase is Fed from 450 V source through a 3-phase bridge inverter. For 180° mode determine load power in kW is ______ (correct up to 2 decimal places)
    Solution

    Concept:

    Three-phase power \(= 3\left( {{I_{ph}}} \right)_{rms}^2 \times R\)

    \({\left( {{I_{ph}}} \right)_{rm}} = \frac{{{{\left( {{V_p}} \right)}_{rms}}}}{{{R_{load}}}}\) 

    \({\left( {{V_L}} \right)_{rms}} = {V_{dc}}\sqrt {\frac{2}{3}} ,\;{\left( {{V_{ph}}} \right)_{rms}} = \frac{{{V_{dc}}}}{{\sqrt 3 }}\) 

    \({\left( {{V_{ph}}} \right)_{rms}} = \frac{{{V_{dc}}\sqrt 2 }}{3}\) 

    Calculation:

    Load resistance, RL = 20 Ω

    Source voltage, Vs = 450 V

    Mode of operation = 180°  

    \({\left( {{V_{ph}}} \right)_{rms}} = \frac{{450\; \times \;\sqrt 2 }}{3}\) 

    = 212.132 V

    \({\left( {{I_{ph}}} \right)_{rms}} = \frac{{212.132}}{{20}}\) 

    \({\left( {{I_{ph}}} \right)_{rms}} = 10.6\;A\) 

    Three-phase power is

    \( = 3\left( {{I_{ph}}} \right)_{rms}^2 \times R = 3 \times {10.6^2} \times 20\) 

    = 6741.6 W = 6.74 kW

  • Question 4
    2 / -0.33
    A star connected load of 15 Ω per phase is fed from 420 V DC source through a 3-phase bridge inverter. If the inverter is operating in 120° conduction mode, the RMS value of thyristor current is _________ (in A)
    Solution

    Concept:

    Parameter

    180° conduction mode

    120° conduction mode

    Phase voltage (Vph)

    \(\frac{{\sqrt 2 }}{3}{V_s}\)

    \(\frac{{{V_s}}}{{\sqrt 6 }}\)

    Line voltage (VL)

    \(\sqrt {\frac{2}{3}} {V_s}\)

    \(\frac{{{V_s}}}{{\sqrt 2 }}\)

    RMS load current (Ior)

    \(\frac{{\sqrt 2 }}{{3R}}{V_s}\)

    \(\frac{{{V_s}}}{{\sqrt 6 R}}\)

    RMS thyristor current (ITr)

    \(\frac{{{V_s}}}{{3R}}\)

    \(\frac{{{V_s}}}{{2\sqrt 3 R}}\)

     

    Calculation:

    The inverter is operating in 120° conduction mode.

    Supply voltage (Vs) = 420 V

    Load resistance (R) = 15 Ω

    The RMS value of thyristor current, \({I_{Tr}} = \frac{{420}}{{2\sqrt 3 \; \times \;15}} = 8.08\;A\)

  • Question 5
    2 / -0.33
    An IGBT chopper modulated power from a 200 V DC supply to a resistive load of 20 Ω. The switching frequency of the choppers is 1 kHz for VDS(sat) = 1.9 V. The chopper has a duty cycle, m = 0.8. The average power loss due to conduction is _______ (in W)
    Solution

    Given that, Vs = 200 V

    VDS(sat) = 1.9 V

    Load resistance (R) = 20 Ω

    Duty cycle (m) = 0.8

    Steady on-state current, \({I_l} = \frac{{{V_s} - {V_{DS\left( {sat} \right)}}}}{R} = \frac{{200 - 1.9}}{{20}} = 9.9\;A\)

    Conduction losses, \({P_c} = \frac{1}{T}\mathop \smallint \limits_0^{{t_{ON}}} {V_{DS\left( {sat} \right)}}{I_D}dt\)

    = VDC(sat) m ID = 1.9 × 0.8 × 9.9 = 15 W
  • Question 6
    2 / -0.33
    A 1000 V 25 A GTO controls power from a DC supply of 600 V to Rload of 30 Ω. The data sheet gives the following information: the on-state voltage drop, VGTO(ON) = 2.2 V; average gate power should not exceed 10 W; IG Turn-off = -25 A.
    Solution

    Concept:

    The load current, \({I_l} = \frac{{{V_s} - {V_{GTO\left( {ON} \right)}}}}{R}\)

    The load power, \(P = \frac{{V_l^2}}{R} = \frac{{{{\left( {{V_s} - {V_{GTO\left( {ON} \right)}}} \right)}^2}}}{R}\)

    The total power gain \( = \frac{P}{{{P_G}}}\)

    Calculation:

    Given that, DC supply voltage (Vs) = 600 V

    Load resistance (R) = 30 Ω

    the on-state voltage drop, VGTO(ON) = 2.2 V

    The average gate power, PG = 10 W

    The load current, \({I_l} = \frac{{600 - 2.2}}{{30}} = 19.93\;A\)

    The load power, \(P = \frac{{{{\left( {600 - 2.2} \right)}^2}}}{{30}} = 11912\;W\)

    The gate power, PG = 10 W

    The total power gain \( = \frac{P}{{{P_G}}} = \frac{{11912}}{{10}} = 1191.2\)
  • Question 7
    2 / -0.33
    A single-phase AC supply is connected to a full wave rectifier through a transformer. The rectifier is required to supply an average DC output voltage of Vdc = 400 V to a resistive load of R = 10 Ω. The kVA rating of the transformer is __________ (in kVA)
    Solution

    Concept:

    In a full wave rectifier though a transformer,

    Average output voltage, \({V_0} = \frac{{2{V_m}}}{\pi }\)

    Average output current, \({I_0} = \frac{{{V_0}}}{R}\)

    RMS value of output voltage Vor = Vs

    RMS value of load current, \({I_{or}} = \frac{{{V_s}}}{R}\)

    Average value of diode current, \({I_d} = \frac{{{I_m}}}{2}\)

    RMS value of diode current, Idr = Ior

    Peak value of diode current, Idm = √2 Ior

    Power delivered to the load = Vor Ior

    Input voltamperes = Vs Ior

    Calculation:

    Given that, DC output voltage (VDC) = 400 V

    Average output voltage of rectifier (V0) = 400 V

    \( \Rightarrow \frac{{2{V_m}}}{\pi } = 400\)

    \( \Rightarrow \frac{{2 \times \sqrt 2 \times {V_s}}}{\pi } = 400\)

    ⇒ Vs = 444.28 V

    Load resistance (R) = 10 Ω

    RMS value of load current, \({I_{or}} = \frac{{444.28}}{{10}} = 44.428\;A\)

    kVA rating of transformer = 444.28 × 44.428 = 19.738 kVA
  • Question 8
    2 / -0.33
    A single-phase semi-converter, connected to 230 V 50 Hz source, is feeding a load R = 10 Ω in series with a large inductance that makes the load ripple-free. The firing angle is 30o, then the current distortion factor is_________
    Solution

    For a single-phase semi-converter, the peak value of the nth component of the current

    \({I_{{s_n}}} = \frac{{4{I_0}}}{{n\pi }}\cos n\frac{\alpha }{2}\)

    \({\left( {{I_{{s_1}}}} \right)_{rms}} = \frac{{2\sqrt 2 }}{\pi }{I_0}\cos \frac{\alpha }{2}\)

    (Is)rms = RMS value of source current

    \({I_{{s_n}}} = {I_0}{\left( {\frac{{\pi - \alpha }}{\pi }} \right)^{1/2}}\)

    Current distortion factor, \(g = \frac{{{I_{{s_1}}}}}{{{I_{{s_n}}}}} = \frac{{\frac{{2\sqrt 2 }}{\pi }{I_0}\cos \frac{\alpha }{2}}}{{{I_0}{{\left( {\frac{{\pi - \alpha }}{\pi }} \right)}^{\frac{1}{2}}}}}\)

    \(g = \frac{{2\sqrt 2 \cos \frac{\alpha }{2}}}{{\sqrt {\pi \left( {\pi - \alpha } \right)} }}\)

    Replacing the value of \(\alpha = \frac{\pi }{6}\) we get,

    \(g = \frac{{2\sqrt 2 \cos \left( {\frac{\pi }{{12}}} \right)}}{{\sqrt {\pi \left( {\pi - \frac{\pi }{6}} \right)} }} = 0.9526\)

  • Question 9
    2 / -0.33
    A three-phase three pulse converter, fed from three-phase 400 V, 50Hz supply, has a load R = 2 Ω, E = 200 V, and large inductance so that load current is constant at 20A. If the source has an inductance of 2 mH, then the value of overlap angle for inverter operation is 
    Solution

    Concept:

    Effect of source inductance: The presence of source inductance affects the rectifier output voltage

    V0 = Vd0 cos α – ΔVd0

    Where \({\rm{\Delta }}{V_{d0}} = \frac{{{V_{d0}}}}{2}\;\left[ {\cos \alpha - \cos \left( {\alpha + \mu } \right)} \right]\)

    μ is the overlap angle

    \({V_{d0}} = \frac{{2{V_m}}}{\pi }\) for 2 pulse

    \(= \frac{{3{V_{mL}}}}{{2\pi }}\) for 3 pulse

    \(= \frac{{3{V_m}}}{\pi }\) for 6 pulse

    Also, ΔVd0 = f Ls I0 (1 pulse)                                                      

    = 4 f Ls I0 (2 pulse)

    = 3 f Ls I0 (3 pulse)                                                                    

    = 6 f Ls I0 (6 pulse)

    Calculation:

    V0 = -E0 + I0 R

    Vd0 cos α – 3 f Ls I0 = -200 + (20)(2)

    \({V_{d0}} = \frac{{3{V_m}}}{{2\pi }}\)

    \(\frac{{3{V_m}}}{{2\pi }}\cos \alpha - 3\;f\;{L_s}\;{I_0} = - 160\)

    \(\frac{{3{V_m}}}{{2\pi }}\cos \alpha = - 154\)

    On solving we get cos α = - 0.57

    ⇒ α = 124.76°

    For three pulse converters:

    \(\frac{{{V_{d0}}}}{2}\left[ {\cos \alpha - \cos \left( {\alpha + \mu } \right)} \right] = 3f\;{L_s}{I_0}\)

    \(\frac{{3{V_m}}}{{2\pi \cdot 2}}\;\left[ {\cos \left( {127.76} \right) - \cos \left( {124.76 + \mu } \right)} \right] = 3\;f\;{L_s}{I_0}\)

    On solving the above equation for overlap angle (μ) we get

    cos (α + μ) = -0.6145

    μ = 3.15°   

  • Question 10
    2 / -0.33
    A single-phase full-bridge inverter has RLC load of R = 4Ω, L = 35 mH, C = 155 μF. The DC input voltage is 230 V and the output frequency is 50 Hz. The third harmonic component in load current is:
    Solution

    Concept:

    General equation of nth harmonic voltage waveform for a single-phase full-bridge inverter is given by:

    \({V_{On}} = \frac{{4{V_s}}}{{n\pi }}\sin \left( {n\omega t} \right)\)

    3rd harmonic waveform:\({V_{03}} = \frac{{4{V_s}}}{{3\pi }}\sin \left( {3\omega t} \right)\)

    \({I_{03}} = \frac{{{{\left( {{V_{03}}} \right)}_{rms}}}}{{\left| {{Z_3}} \right|}}\)

    Calculation:

    Supply voltage (Vs) = 230 V

    \({\left( {{V_{03}}} \right)_{rms}} = \frac{{4{V_s}}}{{3\pi }} \times \frac{1}{{\sqrt 2 }} = \frac{{4 \times 230}}{{3\sqrt 2 \pi }}\)

    (V03)rns = 69.02 V

    \({Z_3} = R + j\left( {3\omega L + \frac{{\left( { - 1} \right)}}{{3\omega C}}} \right)\)

    \({Z_3} = 4 + j\left( {3\omega \left( {35 \times {{10}^{ - 3}}} \right) + \frac{{\left( { - 1} \right)}}{{3\omega \left( {155 \times - 6} \right)}}} \right)\)

    \(\left| {{Z_3}} \right| = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} \)

    |Z3| = 26.44 Ω

    ∴ 3rd harmonic current component

    \({I_{03}} = \frac{{{{\left( {{V_{03}}} \right)}_{rms}}}}{{\left| {{Z_3}} \right|}} = \frac{{69.02}}{{26.44}} = 2.61\;A\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now