Self Studies

Power Electronics Test 2

Result Self Studies

Power Electronics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    A DC-DC converter operates in conduction mode. It has a 36 V input voltage and it feeds a resistive load of 18 Ω. The switching frequency of the converter is 200 Hz. If the switch-on duration is 1.25 ms, which of the following is/are true?
    Solution

    Input voltage (Vs) = 36 V

    Resistive load (R) = 18 Ω

    Frequency (f) = 200 Hz

    Time period (T) \( = \frac{1}{f} = \frac{1}{{200}} = 5\;ms\)

    Duty ratio \( = \frac{{{T_{ON}}}}{T} = \frac{{1.25}}{5} = 0.25\) 

    For buck converter:

    Vo = δVs = 0.25 × 36 = 9 V

    \({I_o} = \frac{9}{{18}} = 0.5A\) 

    Load power = 9 × 0.5 = 4.5 W

    For boost converter:

    \({V_o} = \frac{{{V_s}}}{{\left( {1 - \delta } \right)}} = \frac{{36}}{{0.75}} = 48V\) 

    \({I_o} = \frac{{48}}{{18}} = 2.67A\) 

    Load Power = 48 × 2.67 = 128 W
  • Question 2
    2 / -0.33

    The output voltage of a single-phase full-bridge voltage source inverter is controlled by unipolar PWM with one pulse per half cycle. The input voltage of the inverter is 100 V. For the fundamental RMS component of the output voltage to be 70% of DC voltage, which of the following is/are true?

    Solution

    \({V_o} = \mathop \sum \limits_{n = 1,3, \ldots .}^\infty \left\{ {\frac{{4{V_s}}}{{n\pi }}\sin \frac{{n\pi }}{2}\sin nd} \right\}\sin n\omega t\)

    RMS value of the fundamental component

    \({V_{01}} = \left\{ {\frac{{4{V_s}}}{\pi }\sin \frac{\pi }{2}\sin d} \right\}\frac{1}{{\sqrt 2 }}\) 

    \( = \frac{{2\sqrt 2 {V_s}}}{\pi }\sin d\) 

    Fundamental rms component of output voltage

    = 60% of input DC

    = 0.6 × 100 = 60 V

    \( \Rightarrow 70 = \frac{{2\sqrt 2 }}{\pi } \times 100 \times \sin d\) 

    ⇒ d = 51.03°

    Pulse width = 2d = 102°

  • Question 3
    2 / -0.33
    A three-phase full-wave half-controlled converter supplies a highly inductive load with R = 10 Ω the supply is a three-phase star connected with 400 V RMS. The value of firing angle in degrees, to obtain the dc output current as 15 A is _______
    Solution

    For a three-phase semi converter, the average dc output voltage is

    \({V_{dc}} = \frac{{3\sqrt 3 {V_m}}}{{2\pi }}\left( {1 + \cos \alpha } \right)\) 

    \({I_{dc}} = \frac{{{V_{dc}}}}{R} = 15\) 

    ⇒ Vdc = 15 × 10 = 150 V

    \( \Rightarrow 150 = \frac{{3\sqrt 3 \times \frac{{400 \times \sqrt 2 }}{{\sqrt 3 }}}}{{2\pi }}\left( {1 + \cos \alpha } \right)\) 

    ⇒ α = 116.4°
  • Question 4
    2 / -0.33
    A single-phase half wave controlled rectifier supplied from 230 V a.c. supply is operating at α = 60°. If the load resistor is 10 Ω, the power factor at the ac source is _______
    Solution

    The power factor at the ac source is

    \(pf = \sqrt {\frac{1}{{2\pi }}\left( {\pi \alpha + \frac{1}{2}\sin 2\alpha } \right)} \) 

    \( = \sqrt {\frac{1}{{2\pi }}\left( {\pi - \frac{\pi }{3} + \frac{1}{2}\sin 120^\circ } \right)} \) 

    = 0.633 lagging
  • Question 5
    2 / -0.33
    A step-down chopper has input voltage 200 V and o/p voltage 140 V. If the conduction time of thyristor chopper is 70 μ sec. Now if the frequency operation is increased by 25% keeping conduction time of thyristor constant than find the average value of new output voltage.
    Solution

    Concept:

    For step-down chopper

    Average output V0 = α VS

    Where α = duty cycle

    \(\alpha = \frac{{{T_{On}}}}{{{T_{on}} + {T_{off}}}}\)

    Time period \(T = {T_{on}} + {T_{off}} = \frac{1}{f}\)

    Calculation:

    Given

    V0 = 140 V

    VS = 200 V

    Ton = 70 μsec

    \(\alpha = \frac{{{V_0}}}{{{V_S}}} = \frac{{140}}{{200}} = 0.7\)

    \(\frac{{{T_{on}}}}{{{T_{on}} + {T_{off}}}} = 0.7\)

    0.3 Ton = 0.7 Toff

    ⇒ 0.3 × 70 = 0.7 Toff

    Toff = 30 μ sec

    Time period T = Ton + Toff = 70 + 30

    = 100 μ sec

    Frequency \(f = \frac{1}{T} = \frac{1}{{100}} \times {10^6}\)

    = 10 kHz

    Now frequency is increased by 25%

    Hence f1 = 1.25 × 10

    = 12.5 kHz

    New time period \({T^1} = \frac{1}{{{f^1}}} = \frac{1}{{12.5}} \times {10^3}\)

    = 80 μ sec

    Conduction Time is constant

    Ton = 70 μ sec

    New duty cycle

    \(\alpha ' = \frac{{{T_{on}}}}{{{T^1}}} = \frac{{70}}{{80}}\)

    New Average output voltage

    V0 = α‘VS

    \( = \frac{{70}}{{80}} \times 200\)

    = 175 V

  • Question 6
    2 / -0.33
    A 3-ϕ 180° mode bridge inverter has star connected load of R = 4 Ω and L = 25 mH. The inverter is feed from 220 V dc and its output frequency is 50 Hz. Find the fundamental component of line voltage.
    Solution

    Concept:

    The Fourier analysis of phase voltage

    \({{\rm{V}}_{a0}} = \mathop \sum \limits_{n = 6K \pm 1}^\infty \frac{{2{V_s}}}{{n\pi }}\sin n\omega t\) 

    Where K = 0, 1, 2…

    ∴ Fundamental component of phase voltage

    \({{\rm{V}}_{a1}} = \frac{{\sqrt 2 {V_s}}}{\pi }\) 

    Fundamentals component of line voltage

    \({{\rm{V}}_{L1}} = \sqrt 3 {V_{a1}}\)

    Calculation:

    \(\begin{array}{l}{{\rm{V}}_{a1}} = \frac{{\sqrt {2\;} \times 220}}{\pi } = 99.035\;V\\{{\rm{V}}_{L1}} = \sqrt 3 \times 99.035 = 171.534\;V\end{array}\)

  • Question 7
    2 / -0.33
    AN SCR requires 50 mA gate current to switch it ON. The driver circuit supply voltage is 10 V. The gate-cathode drop is about 1 V and the voltage drop across diode is also 1 V. The resistive load supplied from a 100 V supply is
    Solution

    Resistance firing circuit:

    Diagram

    The voltage drop across R is Vgk and

    I1R = Vgk = Igmax R

    ⇒ Igmax = I1

    I = I1 + Igmax = 2 Igmax

    By applying KVL,

    V = IR1 + VD + Vgk

    \( \Rightarrow {R_1} = \frac{{V - {V_D} - {V_{gk}}}}{I}\)

    Calculation:

    Given that, V = 100, VD = 1 V, Vgk = 1 V

    I = 2 Igmax = 2 × 50 = 100 mA

    Resistive load = (supply voltage – drive transistor drop – gate cathode drop)/100mA

    R1 = (10 – 1 – 1)/100mA

    ⇒ = 80 Ω

  • Question 8
    2 / -0.33
    A class – A chopper circuit is supplied DC source voltage 100 V. The chopper supplies power to a series R-L load with R = 0.5 Ω and L = 1 mH. The chopper switch is ON for 1 ms in an overall period of 3 ms. The minimum value of load current is ______ (in A). Assume continuous current operation of the chopper.
    Solution

    Concept:

    In a class – A chopper,

    Average load voltage Vo = D Vdc

    Minimum value of load current \(={{I}_{o}}-\frac{\text{ }\!\!\Delta\!\!\text{ }{{I}_{L}}}{2}\)

    Maximum value of load current \(={{I}_{o}}+\frac{\text{ }\!\!\Delta\!\!\text{ }{{I}_{L}}}{2}\)

    Average load current \({{I}_{o}}=\frac{{{V}_{o}}}{R}\)

    \(\text{ }\!\!\Delta\!\!\text{ }{{I}_{L}}=\frac{{{V}_{dc}}}{L}D~\left( 1-D \right)T\)

    Calculation:

    Given that, Source voltage (Vdc) = 100 V

    R = 0.5 Ω

    L = 1 mH

    TON = 1 ms

    T = 3 ms

    \(D=\frac{{{T}_{On}}}{T}=\frac{1}{3}\)

    \({{V}_{o}}=100\times \frac{1}{3}=33.33~V\)

    \({{I}_{o}}=\frac{{{V}_{o}}}{R}=\frac{33.33}{0.5}=66.66~A\)

    \(\text{ }\!\!\Delta\!\!\text{ }{{I}_{L}}=\frac{100}{1\times {{10}^{-3}}}\times \frac{1}{3}\times \left( 1-\frac{1}{3} \right)\times 3\times {{10}^{-3}}\)

    = 66.66 A

    Minimum value of load current \(=66.66-\frac{66.66}{2}=33.33~A\)

  • Question 9
    2 / -0.33
    A single-phase midpoint converter supplied from 240/120 V, 50 Hz transformer is connected to a load of 15 Ω resistance and infinite inductance. If the secondary winding of the transformer has a line inductance of 20 mH, which of the following is/are true for a firing angle of 60°?
    Solution

    For mid-point rectifier,

    \({V_{dc}} = \frac{{2{V_m}}}{\pi }\cos \alpha - \frac{{\omega L{I_{dc}}}}{\pi }\) 

    And Vdc = Idc R

    \( \Rightarrow R{I_{dc}} = \frac{{2{V_m}}}{\pi }\cos \alpha - \frac{{\omega L}}{\pi }{I_{dc}}\) 

    \({I_{dc}}\left[ {R + \frac{{\omega L}}{\pi }} \right] = \frac{{2{V_m}}}{\pi }\cos \alpha \) 

    \( \Rightarrow {I_{dc}} = \frac{{\frac{{2{V_m}}}{\pi }\cos \alpha }}{{\left[ {R + \frac{{\omega L}}{\pi }} \right]}}\) 

    \( = \frac{{\frac{{2 \times 120 \times \sqrt 2 }}{\pi }}}{{15 + \frac{{100\pi \times 20}}{{1000\pi }}}}\) 

    = 3.17 A

    Vdc = 15 × 3.17 = 47.6 V

    \(\cos \alpha - \cos \left( {\alpha + \mu } \right) = \frac{{\omega L}}{{{V_m}}}{I_{dc}}\) 

    \( \Rightarrow \cos \left( {\alpha + \mu } \right) = \cos 60^\circ - \frac{{2\pi \times 50 \times 20 \times {{10}^{ - 3}}}}{{169.7}} \times 3.17\) 

    ⇒ α + μ = 67.5°

    ⇒ μ = 7.5°

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now