Self Studies

Control Systems Test 1

Result Self Studies

Control Systems Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Match List-I (characteristic equation) with List-II (Nature of unit step response) and select the correct answer using the code given below:

    List-I

    List-II

    A) s2 + 8s + 15 = 0

    1) undamped

    B) s2 + 24s + 225 = 0

    2) underdamped

    C) s2 + 20.25 = 0

    3) critically damped

    D) s2 + 20s + 100 = 0

    4) overdamped

    Solution

    The characteristic equation of standard second order system is given by

    s2 + 2ξ ωn s + ω2n = 0

    The system is said to be

    a) undamped if ξ = 0

    b) critically damped if ξ = 1

    c) underdamped if ξ < 1

    d) overdamped if ξ > 1

    1) s2 + 8s + 15 = 0

    ω2n = 15 ⇒ ωn = √15

    \(2\xi {{\rm{\omega }}_n} = 8 \Rightarrow 2\xi \left( {\sqrt {15} } \right) = 8 \Rightarrow \xi = \frac{4}{{\sqrt {15} }} > 1\) 

    So, the system is overdamped.

    2) s2 + 24s + 225 = 0

    ω2n = 225 ⇒ ωn = 15

    \(2\xi {{\rm{\omega }}_n} = 24 \Rightarrow 2\xi \left( {15} \right) = 24 \Rightarrow \xi = \frac{{12}}{{15}} < 1\) 

    So, the system is underdamped.

    3) s2 + 20.25 = 0

    \(\omega _n^2 = 20.25 \Rightarrow {\omega _n} = \sqrt {20.25} \) 

    2ξωn = 0 ⇒ ξ = 0

    So, the system is undamped.

    4) s2 + 20s + 100 = 0

    ω2n = 100 ⇒ ωn = 10

    2ξωn = 20 ⇒ 2ξ (10) = 20 ⇒ ξ = 1

    So, the system is critically damped.
  • Question 2
    1 / -0

    The oscillation frequency of the system with the characteristic equation

    s6 + 2s5 + 3s4 + 4s3 + 3s2 + 2s + 1 = 0 is
    Solution

    Given characteristic equation is: s6 + 2s5 + 3s4 + 4s3 + 3s2 + 2s + 1 = 0

    Routh array:

    \(\begin{array}{*{20}{c}}{{s^6}}\\{{s^5}}\\{{s^4}}\\{{s^3}}\\{{s^2}}\\{{s^1}}\\{{s^0}}\end{array}\left| {\begin{array}{*{20}{c}}1&3&3&1\\2&4&2&0\\1&2&1&{}\\0&0&0&{}\\{}&{}&{}&{}\\{}&{}&{}&{}\\{}&{}&{}&{}\end{array}} \right.\)

    \(\frac{d}{{ds}}\left( {{s^4} + 2{s^2} + 1} \right)\)

    ⇒ 4s3 + 4s = 0

    \(\begin{array}{*{20}{c}}{{s^6}}\\{{s^5}}\\{{s^4}}\\{{s^3}}\\{{s^2}}\\{{s^1}}\\{{s^0}}\end{array}\left| {\begin{array}{*{20}{c}}1&3&3&1\\2&4&2&0\\1&2&1&{}\\{0\left( 4 \right)}&{0\left( 4 \right)}&0&{}\\1&1&{}&{}\\0&0&{}&{}\\{}&{}&{}&{}\end{array}} \right.\)

    s2 + 1 = 0

    ⇒ s = ±j

    ⇒ ωn = 1 rad/sec

  • Question 3
    1 / -0

    A unity feedback system has the transfer function \(\frac{{k\left( {s + b} \right)}}{{{s^2}\left( {s + 20} \right)\;}}\)

    The value of b for which the closed loop characteristic equation meet at a single point is
    Solution

    \(G\left( s \right) = \frac{{k\left( {s + b} \right)}}{{{s^2}\left( {s + 20} \right)}}\)

    Characteristic equation: 1 + G(s) H(s) = 0

    \( \Rightarrow 1 + \frac{{k\left( {s + b} \right)}}{{{s^2}\left( {s + 20} \right)}} = 0\)

    \( \Rightarrow k = \frac{{ - \left( {{s^3} + 20{s^2}} \right)}}{{\left( {s + b} \right)}}\)

    \(\frac{{dk}}{{ds}} = 0\)

    \( \Rightarrow \frac{{\left( {s + b} \right)\left( {3{s^2} + 40s} \right) - \left( {{s^3} + 20{s^2}} \right)\left( 1 \right)}}{{{{\left( {s + b} \right)}^2}}} = 0\)

    3s3 + 3bs2+ 40s2 + 40bs – s3 – 20s2 = 0

    2s3 + (3b + 20) s2 + 40 bs = 0

    s (2s2 + (3b + 20) s + 40b) = 0

    s = 0 and 2s2 + (3b + 20) s + 40b = 0

    To have single point,

    (3b + 20)2 – 4(2) (40b) = 0

    9b2 + 400 + 120b – 320b = 0

    9b2 – 200b + 400 = 0

    \( \Rightarrow b = 20,\frac{{20}}{9}\)

    For b = 20, the pole and zero gets cancelled.

    So, the required value of \(b = \frac{{20}}{9}\)
  • Question 4
    1 / -0

    A third order system has 3 pole at s = -1. The system is connected in the unity negative feedback configuration. If the phase margin of the system is 45°, the required value of DC gain of the system is _____. [upto 2 decimal]

    Solution

    Concept:

    Phase margin = 180° + ∠GH

    Calculation:

    Let the system have a DC gain of ‘K’

    Then the OLTF

    \(G\left( s \right) = \frac{k}{{{{\left( {s + 1} \right)}^3}}}\)

    PM = 180° + ∠GH(s) [H(s) = 1]

    \(= 180 + \angle \frac{k}{{{{\left( {s + 1} \right)}^3}}} = 45^\circ\) 

    = 180 + -3 tan-1(ω) = 45

    -3 tan-1 ω = 45 – 180

    -3 tan-1 ω = -135

    tan-1 ω = 45

    ω = 1

    Phase margin is calculated at gain cross over frequency. Hence the calculated value of ω is ωgc

    The gain cross over frequency is the where gain of the system = 1

    \({\left| {\frac{k}{{{{\left( {s + 1} \right)}^3}}}} \right|_{\omega = {\omega _{gc}}}} = 1\) 

    \({\left| {\frac{k}{{{{\left( {j\omega + 1} \right)}^3}}}} \right|_{\omega = {\omega _{gc}}}} = 1\) 

    \({\left| {\frac{k}{{\sqrt {{{\left( {s + 1} \right)}^3}} }}} \right|_{\omega = {\omega _{gc}}}} = 1\) 

    \(\Rightarrow \frac{k}{{\sqrt {{{\left( 2 \right)}^3}} }} = 1\) 

    k = 2√2

    k = 2.828

  • Question 5
    1 / -0

    Consider the following transfer function of phase lag controller.

    \(G\left( s \right) = \frac{{0.5 + s}}{{0.25 + s}}\)

    The maximum phase lag provided by this compensator is ______ (in degrees).

    Solution

    \(G\left( s \right) = \frac{{0.5 + s}}{{0.25 + s}}\)

    \(= \frac{{0.5\left( {1 + 2s} \right)}}{{0.25\left( {1 + 4s} \right)}} = \frac{{2\left( {1 + 2s} \right)}}{{\left( {1 + 4s} \right)}}\)

    Now, it is in the form of  \(\left( {\frac{{1 + aTs}}{{1 + Ts}}} \right)\)

    aT = 2 and T = 4

    ⇒ a = ½

    Maximum phase lag  \({\phi _m} = {\sin ^{ - 1}}\left( {\frac{{a - 1}}{{a + 1}}} \right)\)

    \(= {\sin ^{ - 1}}\left( {\frac{{\frac{1}{2} - 1}}{{\frac{1}{2} + 1}}} \right)\)

    \(= {\sin ^{ - 1}}\left( { - \frac{1}{3}} \right)\)

    ⇒ ϕm = -19.47°

    Here -ve sign indicates lagging angle.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now