Self Studies

Control Systems Test 2

Result Self Studies

Control Systems Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The transfer function of a system is represented by the equation

    \(\ddot y\left( t \right) - 3\dot y\left( t \right) - 4y\left( t \right) = \ddot u\left( t \right) + 2\dot u\left( t \right) + 2u\left( t \right),\)

    Which of the following statements is/are true?

    Solution

    Concept:

    A transfer function is defined as the ratio of Laplace transform of the output to the Laplace transform of the input by assuming initial conditions are zero.

    TF = L[output]/L[input]

    \(TF = \frac{{C\left( s \right)}}{{R\left( s \right)}}\)

    For unit impulse input i.e. r(t) = δ(t)

    ⇒ R(s) = δ(s) = 1

    Now transfer function = C(s)

    Therefore, the transfer function is also known as the impulse response of the system.

    Transfer function = L[IR]

    IR = L-1 [TF]

    Calculation:

    Given the differential equation is,

    \(\ddot y\left( t \right) - 3\dot y\left( t \right) - 4y\left( t \right) = \ddot u\left( t \right) + 2\dot u\left( t \right) + 2u\left( t \right),\)

    By applying the Laplace transform,

    \(\Rightarrow \frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{{{s^2} - 2s + 2}}{{{s^2} - 3s - 4}}\)

    \(= \frac{{\left( {s - \left( { - 1 + j} \right)} \right)\left( {s - \left( { - 1 - j} \right)} \right)}}{{\left( {s + 1} \right)\left( {s - 4} \right)}}\)

    Poles of the system = -1, 4

    Zeros of the system = -1 + j, -1 - j

    The system is unstable as one pole lies on the right half of the s-plane.

  • Question 2
    1 / -0

    Match List-I (Transfer function of the system) with List-II (Type and order of the system) and select the correct answer using the codes given below the Lists:

    List-I

    List-II

    \(A)\frac{{2\left( {s + 2} \right)}}{{s\left( {s + 5} \right)}}\)

    1) Type-0, second order

    \(B)\frac{{\left( {s + 2} \right)}}{{\left( {s + 3} \right)\left( {s + 5} \right)}}\)

    2) Type-1, second order

    \(C)\frac{{2\left( {s + 5} \right)}}{{{s^2}\left( {s + 2} \right)}}\)

    3) Type-0, third order

    \(D)\frac{{5\left( {s + 2} \right)}}{{\left( {s + 1} \right)\left( {s + 3} \right)\left( {s + 5} \right)}}\)

    4) Type-2, third order

    Solution

    Type of the system indicates the number of poles at origin.

    Order of the system indicates the total number of poles.

    1) \(T/F = \frac{{2\left( {s + 2} \right)}}{{s\left( {s + 5} \right)}}\)

    Type = 1, order = 2

    2) \(T/F = \frac{{\left( {s + 2} \right)}}{{\left( {s + 3} \right)\left( {s + 5} \right)}}\)

    Type = 0, order = 2

    3) \(T/F = \frac{{2\left( {s + 5} \right)}}{{{s^2}\left( {s + 2} \right)}}\)

    Type = 2, order = 3

    4) \(T/F = \frac{{5\left( {s + 2} \right)}}{{\left( {s + 1} \right)\left( {s + 3} \right)\left( {s + 5} \right)}}\)

    Type = 0, order = 3

  • Question 3
    1 / -0
    A unity feedback system has open loop transfer function \(G\left( s \right) = \frac{{K\left( {s + 1.1} \right)\left( {s + 2.2} \right)}}{{s\left( {s + 3.3} \right)\left( {s + 4.4} \right)}}.\) For K = 0 the closed-loop poles are
    Solution

    \(G\left( s \right) = \frac{{K\left( {s + 1.1} \right)\left( {s + 2.2} \right)}}{{s\left( {s + 3.3} \right)\left( {s + 4.4} \right)}}\)

    Closed loop poles are the roots of the characteristic equation.

    1 + G(s) H(s) = 0

    \(\Rightarrow 1 + \frac{{K\left( {s + 1.1} \right)\left( {s + 2.2} \right)}}{{s\left( {s + 3.3} \right)\left( {s + 4.4} \right)}} = 0\)

    For K = 0,

    \(s\left( {s + 3.3} \right)\left( {s + 4.4} \right) = 0\)

    Closed loop poles = 0, -3.3 and -4.4

    All the roots are real and distinct.
  • Question 4
    1 / -0
    An open loop control system results in a response of 1 – e-3t (sin 4t + cos 4t) for a unit impulse. The DC gain of the open loop control system for a unity feedback is _______
    Solution

    y(t) = 1 – e-3t (sin 4t + cos 4t)

    By applying Laplace transform,

    \(Y\left( s \right) = \frac{1}{s} - \frac{4}{{{{\left( {s + 3} \right)}^2} + {4^2}}} - \frac{{\left( {s + 3} \right)}}{{{{\left( {s + 3} \right)}^2} + {4^2}}}\)

    \(= \frac{1}{s} - \frac{4}{{{{\left( {s + 3} \right)}^2} + 16}} - \frac{{\left( {s + 3} \right)}}{{{{\left( {s + 3} \right)}^2} + 16}}\)

    \(Y\left( s \right) = \frac{{{{\left( {s + 3} \right)}^2} + 16 - \left( {4 + s + 3} \right)s}}{{s\left( {{{\left( {s + 3} \right)}^2} + 16} \right)}}\)

    DC gain of open loop system

    \(= \begin{array}{*{20}{c}} {lt}\\ {s \to 0} \end{array}sY\left( s \right)\)

    \(= \begin{array}{*{20}{c}} {lt}\\ {s \to 0} \end{array}s \cdot \frac{{{{\left( {s + 3} \right)}^2} + 16 - s\left( {s + 7} \right)}}{{s\left( {{{\left( {s + 3} \right)}^2} + 16} \right)}} = 1\)

  • Question 5
    1 / -0
    A control system whose ramp input response is 3(1 – e-2t) is cascaded to another control block whose step response is e-4t. What is the transfer function of the cascaded combination?
    Solution

    System 1:

    c1(t) = 3(1 – e-2t), r1(t) = r(t)

    By applying Laplace transform,

    \({C_1}\left( s \right) = 3\left( {\frac{1}{s} - \frac{1}{{s + 2}}} \right) = \frac{6}{{s\left( {s + 2} \right)}}\)

    \(\frac{{{C_1}\left( s \right)}}{{{R_1}\left( s \right)}} = \frac{{\frac{6}{{s\left( {s + 2} \right)}}}}{{\frac{1}{{{s^2}}}}} = \frac{{6s}}{{\left( {s + 2} \right)}}\)

    System 2:

    c2(t) = e-4t, r2(t) = u(t)

    By applying Laplace transform,

    \({C_2}\left( s \right) = \frac{1}{{\left( {s + 4} \right)}},\;{R_2}\left( s \right) = \frac{1}{s}\)

    \(\frac{{{C_2}\left( s \right)}}{{{R_2}\left( s \right)}} = \frac{{\frac{1}{{\left( {s + 4} \right)}}}}{{\frac{1}{s}}} = \frac{s}{{s + 4}}\)

    As the two systems are connected in cascade connection, the transfer functions will get multiplied.

    The overall transfer function is,

    \(= \frac{{6s}}{{\left( {s + 2} \right)}} \cdot \frac{s}{{\left( {s + 4} \right)}}\)

    \(= \frac{{6{s^2}}}{{\left( {s + 2} \right)\left( {s + 4} \right)}}\)
  • Question 6
    1 / -0

    A system is represented by the differential equation

    ÿ(t) + 6ẏ(t) + 5y(t) = u(t)

    Which of the following is/are true for a unit step response?

    Solution

    Concept:

    A transfer function is defined as the ratio of Laplace transform of the output to the Laplace transform of the input by assuming initial conditions are zero.

    TF = L[output]/L[input]

    \(TF = \frac{{C\left( s \right)}}{{R\left( s \right)}}\)

    For unit impulse input i.e. r(t) = δ(t)

    ⇒ R(s) = δ(s) = 1

    Now transfer function = C(s)

    Therefore, transfer function is also known as impulse response of the system.

    Transfer function = L[IR]

    IR = L-1 [TF]

    Calculation:

    ÿ(t) + 6ẏ(t) + 5y(t) = u(t)

    By applying the Laplace transform,

    s2y(s) + 6sy(s) + 5y(s) = U(s)

    \( \Rightarrow \frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{1}{{{s^2} + 6s + 5}}\)

    \( \Rightarrow \frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{1}{{\left( {s + 1} \right)\left( {s + 5} \right)}}\)

    For unit step response, \(U\left( s \right) = \frac{1}{s}\) 

    \( \Rightarrow Y\left( s \right) = \frac{1}{{s\left( {s + 1} \right)\left( {s + 5} \right)}}\)

    \(= \frac{1}{{5s}} - \frac{1}{{4\left( {s + 1} \right)}} + \frac{1}{{20\left( {s + 5} \right)}}\)

    By applying inverse Laplace transform,

    y(t) = 0.2 – 0.25 e-t + 0.05 e-5t

    The steady state value of output is,

    y(t = ∞) = 0.2
  • Question 7
    1 / -0
    The response y(t) of a linear system to an excitation x(t) = e-3t u(t) is y(t) = (2t + 1) e-2t u(t). Poles and zeros will be at
    Solution

    x(t) = e-3t u(t)

    \(\Rightarrow X\left( s \right) = \frac{1}{{s + 3}}\) 

    y(t) = (2t + 1) e-2t u(t)

    = (2t e-2t + e-2t) u(t)

    = 2t e-2t u(t) + e-2t u(t)

    \( \Rightarrow y\left( s \right) = \frac{2}{{{{\left( {s + 2} \right)}^2}}} + \frac{1}{{s + 2}} = \frac{{s + 4}}{{{{\left( {s + 2} \right)}^2}}}\) 

    Transfer function,

    \(T\left( s \right) = \frac{{Y\left( s \right)}}{{X\left( s \right)}} = \frac{{\left( {s + 4} \right)\left( {s + 3} \right)}}{{{{\left( {s + 2} \right)}^2}}}\)

    Zeros of T(s) = -4 and -3

    Zeros of T(s) = -2 and -2
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now