Concept:
A transfer function is defined as the ratio of Laplace transform of the output to the Laplace transform of the input by assuming initial conditions are zero.
TF = L[output]/L[input]
\(TF = \frac{{C\left( s \right)}}{{R\left( s \right)}}\)
For unit impulse input i.e. r(t) = δ(t)
⇒ R(s) = δ(s) = 1
Now transfer function = C(s)
Therefore, transfer function is also known as impulse response of the system.
Transfer function = L[IR]
IR = L-1 [TF]
Calculation:
ÿ(t) + 6ẏ(t) + 5y(t) = u(t)
By applying the Laplace transform,
s2y(s) + 6sy(s) + 5y(s) = U(s)
\( \Rightarrow \frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{1}{{{s^2} + 6s + 5}}\)
\( \Rightarrow \frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{1}{{\left( {s + 1} \right)\left( {s + 5} \right)}}\)
For unit step response, \(U\left( s \right) = \frac{1}{s}\)
\( \Rightarrow Y\left( s \right) = \frac{1}{{s\left( {s + 1} \right)\left( {s + 5} \right)}}\)
\(= \frac{1}{{5s}} - \frac{1}{{4\left( {s + 1} \right)}} + \frac{1}{{20\left( {s + 5} \right)}}\)
By applying inverse Laplace transform,
y(t) = 0.2 – 0.25 e-t + 0.05 e-5t
The steady state value of output is,
y(t = ∞) = 0.2