Self Studies

Control Systems...

TIME LEFT -
  • Question 1
    1 / -0

    A second order system is governed by \(\frac{{{d^2}y}}{{d{t^2}}} + s\frac{{dy}}{{dt}} + 6y = u\left( t \right)\)

    The number of state variables required for representing it in the state space representation is ______

  • Question 2
    1 / -0

    Identify the matrix that can be a state transition matrix.

  • Question 3
    1 / -0

    The vector matrix differential equation of a system is given by \(\dot x = \left[ {\begin{array}{*{20}{c}}{\;\;\;0}&{\;\;\;1}\\{ - 2}&{ - 3}\end{array}} \right]x\)

    The state transition matrix of the system is-

  • Question 4
    1 / -0

    Given the homogeneous state space equation \(\dot x = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&{ - 2} \end{array}} \right]x\) and the initial state value \(x\left( 0 \right) = \left[ {\begin{array}{*{20}{c}} {10}\\ { - 10} \end{array}} \right]\)

    The steady state values of \({x_{ss1}} = \mathop {\lim }\limits_{t \to \infty } {x_1}\left( t \right)\) and \({x_{ss2}} = \mathop {\lim }\limits_{t \to \infty } {x_2}\left( t \right)\) are

  • Question 5
    1 / -0

    Consider the system \(\frac{{dx}}{{dt}} = Ax + Bu\) with \(A = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} p\\ q \end{array}} \right]\) and \(C = \left[ {\begin{array}{*{20}{c}} r&s \end{array}} \right]\) where p, q, r and s are arbitrary real numbers. Which of the following statements is / are true?

  • Question 6
    1 / -0

    Given the system defined by the following equations, find the transfer function, \(G\left( s \right) = \frac{{Y\left( s \right)}}{{U\left( s \right)}}\)

    \(\dot x = \left[ {\begin{array}{*{20}{c}}{ - 4}&{ - 1.5}\\4&0\end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}2\\0\end{array}} \right]u\)

    y = [1.5 0.625] x

  • Question 7
    1 / -0

    The state space representation of an LTI system has \(A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 2&1 \end{array}} \right]\)

    Which among the following can represent the same system

  • Question 8
    1 / -0

    Consider the following state space representation of a linear time-invariant system.

    \(\frac{{dx\left( t \right)}}{{dt}} = \left[ {\begin{array}{*{20}{c}} { - 2}&0\\ 0&{ - 3} \end{array}} \right]x\left( t \right)\)

    y(t) = C x(t)

    \({C^T} = \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right]x\left( t \right)\;and\;X\left( 0 \right) = \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right]\)

    The value of y(t) for t = 1 is _______

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 8

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now