Self Studies
Selfstudy
Selfstudy

Signals and Systems Test 1

Result Self Studies

Signals and Systems Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For a linear time invariant system having h(t) = e-6t u(t) and if input to system is x(t) = e-3t u(t) then the convolution of two signal x(t) * h(t) is ______.
    Solution

    Given that, x(t) = e-3t u(t)

    h(t) = e-6t u(t)

    We know x(t) * h(t) = x(s) ⋅ H(s) i.e. convolution in one domain is multiplication in another domain

    x(t) → x(s)

    \({e^{ - 3t}}u\left( t \right) \to \frac{1}{{s + 3}}\) 

    \({e^{ - 6t}}u\left( t \right) \to \frac{1}{{s + 6}}\) 

    \({e^{ - 3t}}u\left( t \right)*{e^{ - 6t}}u\left( t \right) = \frac{1}{{s + 3}} \cdot \frac{1}{{s + 6}}\) 

    \( \Rightarrow \frac{1}{{\left( {s + 3} \right)\left( {s + 6} \right)}} = \frac{A}{{s + 3}} \cdot \frac{B}{{s + 6}}\) 

    \(A = {\left. {\frac{1}{{s + 6}}} \right|_{s = - 3}} = \frac{1}{3}\) 

    \(B = {\left. {\frac{1}{{s + 3}}} \right|_{s = - 6}} = - \frac{1}{3}\) 

    \( \Rightarrow \frac{1}{{\left( {s + 3} \right)\left( {s + 6} \right)}} = \frac{1}{{3\left( {s + 3} \right)}} - \frac{1}{{3\left( {s + 6} \right)}}\) 

    By applying inverse Laplace transform,

    \( = \frac{1}{3}{e^{ - 3t}}u\left( t \right) - \frac{1}{3}{e^{ - 6t}}u\left( t \right)\) 

    \(= \left( {\frac{{{e^{ - 3t}} - {e^{ - 6t}}}}{3}} \right)u\left( t \right)\) 

  • Question 2
    1 / -0
    The value of power of signal given below x(t) = 4 + 3 sin t is _______.
    Solution

    We know power \(\left( P \right) = \mathop {{\rm{lt}}}\limits_{T \to 0} \frac{1}{T}\mathop \smallint \nolimits_0^T {\left[ {x\left( t \right)} \right]^2}dt\) 

    \(\left( P \right) = \mathop {{\rm{lt}}}\limits_{T \to 0} \frac{1}{T}\mathop \smallint \nolimits_0^T {\left( {4 + 3\sin t} \right)^2}dt\) 

    The time period of sine signal is 2π.

    So, \(P = \mathop {{\rm{lt}}}\limits_{T \to 0} \left( {\frac{1}{{2\pi }}} \right)\mathop \smallint \nolimits_0^{2\pi } \left( {16 + 9{{\sin }^2}t + 24\sin t} \right)dt\) 

    \(P = \mathop {{\rm{lt}}}\limits_{T \to 0} \frac{1}{{2\pi }}\left[ {16\left( t \right)_0^{2\pi } + 9\mathop \smallint \nolimits_0^{2\pi } \frac{{1 - \cos 2t}}{2} + 24\mathop \smallint \nolimits_0^{2\pi } \sin t\;dt} \right]\) 

    \(= \mathop {{\rm{lt}}}\limits_{T \to 0} \frac{1}{{2\pi }}\left[ {\left( {32\pi } \right) + \frac{9}{2}\left( {2\pi - \frac{1}{2}\left( {\sin 2t} \right)_0^{2\pi }} \right) + 24\left( { - \cos t} \right)_0^{2\pi }} \right]\) 

    \(= \mathop {{\rm{lt}}}\limits_{T \to 0} \frac{1}{{2\pi }}\left( {32\pi + 9\pi + 0} \right)\) 

    \( = \frac{{41\pi }}{{2\pi }} = 20.5\;W\) 

  • Question 3
    1 / -0
    The value of integral \(\mathop \smallint \nolimits_{ - 4}^6 \left( {3{t^3} + 6{t^2} + \cos \pi t} \right)\frac{{{d^3}}}{{d{t^3}}}\delta \left( {t - 2} \right)dt\) is ______.
    Solution

    Given integral is \(\mathop \smallint \nolimits_{ - 4}^6 \left( {3{t^3} + 6{t^2} + \cos \pi t} \right)\frac{{{d^3}}}{{d{t^3}}}\delta \left( {t - 2} \right)dt\) 

    δ (t - 2) indicates the unit impulse function shifted by t = 2, but still in limit of (-4, 6)

    So function value is non zero.

    We know that \(\mathop \smallint \nolimits_a^b x\left( t \right)\frac{{{d^n}}}{{d{t^n}}}\delta \left( {t - {t_0}} \right) = {\left( { - 1} \right)^n}{\left. {\frac{{{d^n}}}{{d{t^n}}}x\left( t \right)} \right|_{t = {t_0}}}\) 

    \(\mathop \smallint \nolimits_{ - 4}^6 \left( {3{t^3} + 6{t^2} + \cos \pi t} \right)\frac{{{d^3}}}{{d{t^3}}}\delta \left( {t - 2} \right)dt\) 

    \(= {\left( { - 1} \right)^3}{\left. {\left[ {\frac{{{d^3}}}{{d{t^3}}}\left( {3{t^3} + 6{t^2} + \cos \pi t} \right)} \right]} \right|_{t = 2}}\) 

    \(= \left( { - 1} \right){\left[ {3 \times 3\frac{{{d^2}}}{{d{t^2}}}\left( {{t^2}} \right) + 6 \times 2\frac{{{d^2}}}{{d{t^2}}}t - \pi \sin \pi t} \right]_{t = 2}}\) 

    \(= \left( { - 1} \right){\left( {18\frac{d}{{dt}}\left( t \right) + 0 - {\pi ^2}\frac{d}{{dt}}\cos \pi t} \right)_{t = 2}}\) 

    = (-1) (18 + π3 sin πt)t = 2

    = (-1) (18 + π3 sin 2π)

    = -18

  • Question 4
    1 / -0
    What is the range of values of a and b for which the linear time-invariant system with impulse response \(h\left( n \right) = \left\{ {\begin{array}{*{20}{c}}{{a^n},}&{n \ge 0}\\{{b^n},}&{n < 0}\end{array}} \right.\) is stable?
    Solution

    \(h\left( n \right) = \left\{ {\begin{array}{*{20}{c}}{{a^n},}&{n \ge 0}\\{{b^n},}&{n < 0}\end{array}} \right.\) 

    For stability, h(n) must be absolute summable.

    \(\mathop \sum \limits_{ - \infty }^\infty {\left| {h\left( n \right)} \right|^2} < \infty \) 

    \(\Rightarrow \mathop \sum \limits_{n = 0}^\infty {\left| {{a^n}} \right|^2} + \mathop \sum \limits_{ - \infty }^{ - 1} {\left| {{b^n}} \right|^2} < \infty \) 

    The above equation valid for |a|< 1 and |b|> 1.

  • Question 5
    1 / -0

    The period of the given signal is:

    \(x\left( n \right) = \sin \left( {\frac{{2\pi }}{5}n} \right) + 3\cos \left( {\frac{{2\pi }}{7}n} \right) + \cos \left( {\frac{{4\pi\;}}{{22}}n + \frac{\pi }{2}} \right)\)
    Solution

    \(\omega \;\left( {Angular\;frequency} \right) = \frac{{2\pi }}{T}\)

    So, \(T= \frac{{2\pi }}{\omega }\)      ---- (1)

    The given signal can be represented as:

    \( \Rightarrow x\left( n \right) = 1 + \sin \left( {{\omega _1}n} \right) + 3\cos \left( {{\omega _2}n} \right) + \cos \left( {{\omega _3}n + \frac{\pi }{2}} \right)\)

    Where \({\omega _1} = \frac{{2\pi }}{5},\;{\omega _2} = \frac{{2\pi }}{7}\;and\;{\omega _3} = \frac{{4\pi }}{{22}}\) 

    Using Equation (1)

     \({T_1} = \frac{{2\pi }}{{2\pi }} \times 5 = 5\)

    \(\;{T_2} = \frac{{2\pi }}{{2\pi }} \times 7 = 7\)

    \({T_3} = \frac{{2\pi }}{{4\pi }} \times 22 = 11\)

    The period of the combination of the given signals is therefore, the LCM [T1, T2, T3], which is = 385

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now