Self Studies
Selfstudy
Selfstudy

Signals and Systems Test 4

Result Self Studies

Signals and Systems Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Determine the function of time x(t), for the following Laplace transform and their associated regions of convergence:

    \(X\left( s \right) = \frac{{s + 2}}{{{s^2} + 7s + 12}}\;\;,\; - 4 < Re\left( s \right) < - 3\)

    Solution

    Concept:

    If X(s) is Laplace transform of x(t), then

    \(x\left( t \right) = {e^{ - at}}u\left( t \right) \leftrightarrow X\left( s \right) = \frac{1}{{\left( {s + a} \right)}};ROC:s > - a\)

    \(x\left( t \right) = - {e^{ - at}}u\left( { - t} \right) \leftrightarrow X\left( s \right) = \frac{1}{{\left( {s + a} \right)}};ROC:s < - a\)

    \(x\left( t \right) = {e^{at}}u\left( t \right) \leftrightarrow X\left( s \right) = \frac{1}{{\left( {s - a} \right)}};ROC:s > a\)

    \(x\left( t \right) = - {e^{at}}u\left( t \right) \leftrightarrow X\left( s \right) = \frac{1}{{\left( {s - a} \right)}};ROC:s < a\)

    Calculation:

    \(X\left( s \right) = \frac{{s + 2}}{{{s^2} + 7s + 12}}\)

    \(\frac{{s + 2}}{{\left( {s + 3} \right)\left( {s + 4} \right)}}\)

    \(= \frac{2}{{\left( {s + 4} \right)}} - \frac{1}{{\left( {s + 3} \right)}}\)

    For \(Re\left( s \right) > - 4,\;\frac{2}{{\left( {s + 4} \right)}} \leftrightarrow 2{e^{ - 4t}}u\left( t \right)\) 

    For \(Re\left( s \right) < - 3,\;\frac{1}{{\left( {s + 3} \right)}} \leftrightarrow \; - {e^{ - 3t}}u\left( { - t} \right)\) 

    x(t) = 2e-4t u(t) + e-3t u(-t)

  • Question 2
    1 / -0
    A pressure gauge that can be modelled as an LTI system has a time response to a unit step input given by (1 – e-t – te-t) u(t). For the certain input x(t), the output is observed to be (2 – 3e-t + e-3t) u(t). For this observed measurement, the true pressure input to the gauge as a function of time is
    Solution

    When the given system is fed with the input u(t), the output produced is (1 – e-t – te-t) u(t).

    Hence, the system function H(s), is the ratio of the Laplace transform of the output divided by the Laplace transform of the input.

    \(H\left( s \right) = L\left( {h\left( t \right)} \right) = \frac{{L\left[ {\left( {1 - {e^{ - t}} - t{e^{ - t}}} \right)u\left( t \right)} \right]}}{{L\left( {u\left( t \right)} \right)}}\) 

    \(H\left( s \right) = \frac{{\frac{1}{s} - \frac{1}{{s + 1}} - \frac{1}{{{{\left( {s + 1} \right)}^2}}}}}{{\frac{1}{s}}} = \frac{1}{{{{\left( {s + 1} \right)}^2}}}\) 

    For the given input x(t), the observed output

    y(t) = (2 – 3e-t + e-3t) u(t)

    \(Y\left( s \right) = \frac{2}{s} - \frac{3}{{\left( {s + 1} \right)}} + \frac{1}{{\left( {s + 3} \right)}}\) 

    \( = \frac{{2\left( {s + 1} \right)\left( {s + 3} \right) - 3\left( s \right)\left( {s + 3} \right) + s\left( {s + 1} \right)}}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}\) 

    \( = \frac{{2\left( {{s^2} + 4s + 3} \right) - 3\left( {{s^2} + 3s} \right) + {s^2} + s}}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}\) 

    \(= \frac{6}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}\) 

    \(X\left( s \right) = \frac{{Y\left( s \right)}}{{H\left( s \right)}}\) 

    \( = \frac{{\frac{6}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}}}{{\frac{1}{{{{\left( {s + 1} \right)}^2}}}}}\) 

    \(= \frac{{6\left( {s + 1} \right)}}{{s\left( {s + 3} \right)}}\) 

    \(= \frac{4}{{\left( {s + 3} \right)}} + \frac{2}{s}\) 

    x(t) = (4e-3t + 2) u(t)

  • Question 3
    1 / -0
    Which of the following statements is false.
    Solution

    1. X(s) converges to \(\frac{2}{{{s^3}}}\) with ROC: Re (s) > 0.

    For limit \(t \to + \infty ,\;\;{t^2}{e^{ - st}} = {t^2}{e^{ - \left( {\sigma + j\omega } \right)t}}\) tends to zero for σ = Re(s) > 0 as the exponent term dominates and its integral from 0 to +∞ converges.

    Therefore, the given statement is false.

    2. \({e^{\left( {{t^2} - st} \right)}}\) does not tend to zero as t → +∞, which means the integral from 0 to +∞ is unbounded for all s. Thus the Laplace transform cannot converge for any value of s.

    Therefore, the given statement is true.

    3. For \(Re\left( s \right) > 0,\;\;{e^{j{\omega _0}t - st}}\) does not tend to zero for t → -∞.

    For Re(s) < 0, it does not converge for t → +∞.

    Hence for no value of s does the Laplace transform converge.

    Therefore, the given statement is true.

    4. |t| = t u(t) – t u(-t).

    For t u(t), the ROC is Re(s) > 0

    For t u(-t), the ROC is Re(s) < 0

    Hence, there is no value of s common to both the ROCs.

    Therefore, the given statement is true.    
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now