When the given system is fed with the input u(t), the output produced is (1 – e-t – te-t) u(t).
Hence, the system function H(s), is the ratio of the Laplace transform of the output divided by the Laplace transform of the input.
\(H\left( s \right) = L\left( {h\left( t \right)} \right) = \frac{{L\left[ {\left( {1 - {e^{ - t}} - t{e^{ - t}}} \right)u\left( t \right)} \right]}}{{L\left( {u\left( t \right)} \right)}}\)
\(H\left( s \right) = \frac{{\frac{1}{s} - \frac{1}{{s + 1}} - \frac{1}{{{{\left( {s + 1} \right)}^2}}}}}{{\frac{1}{s}}} = \frac{1}{{{{\left( {s + 1} \right)}^2}}}\)
For the given input x(t), the observed output
y(t) = (2 – 3e-t + e-3t) u(t)
\(Y\left( s \right) = \frac{2}{s} - \frac{3}{{\left( {s + 1} \right)}} + \frac{1}{{\left( {s + 3} \right)}}\)
\( = \frac{{2\left( {s + 1} \right)\left( {s + 3} \right) - 3\left( s \right)\left( {s + 3} \right) + s\left( {s + 1} \right)}}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}\)
\( = \frac{{2\left( {{s^2} + 4s + 3} \right) - 3\left( {{s^2} + 3s} \right) + {s^2} + s}}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}\)
\(= \frac{6}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}\)
\(X\left( s \right) = \frac{{Y\left( s \right)}}{{H\left( s \right)}}\)
\( = \frac{{\frac{6}{{s\left( {s + 1} \right)\left( {s + 3} \right)}}}}{{\frac{1}{{{{\left( {s + 1} \right)}^2}}}}}\)
\(= \frac{{6\left( {s + 1} \right)}}{{s\left( {s + 3} \right)}}\)
\(= \frac{4}{{\left( {s + 3} \right)}} + \frac{2}{s}\)
⇒ x(t) = (4e-3t + 2) u(t)