Self Studies
Selfstudy
Selfstudy

Signals and Systems Test 5

Result Self Studies

Signals and Systems Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the z-transform of a sequence x[n] = {1, 1, -1, -1} is X[z], then the value of X(1/2) is
    Solution

    \(X\left( z \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{z^{ - n}}\) 

    \(= \mathop \sum \limits_{n = 0}^3 x\left[ n \right]{z^{ - n}}\) 

    = z-0 + z-1 – z-2 – z-3

    \(= 1 + \frac{1}{z} - \frac{1}{{{z^2}}} - \frac{1}{{{z^3}}}\) 

    \(x\left( {\frac{1}{2}} \right) = 1 + 2 - 4 - 8 = - 9\) 

  • Question 2
    1 / -0

    It is given that \(H\left( z \right) = \frac{{11}}{{\left( {1 - \frac{1}{3}{z^{ - 1}}} \right)\left( {1 - 4{z^{ - 1}}} \right)}}\)

    If H(z) is system function of LTI system and system is stable, then h(0) is given by
    Solution

    \(H\left( z \right) = \frac{{11}}{{\left( {1 - \frac{1}{3}{Z^{ - 1}}} \right)\left( {1 - 4{z^{ - 1}}} \right)}}\) 

    \(H\left( z \right) = \frac{{ - 1}}{{\left( {1 - \frac{1}{3}{Z^{ - 1}}} \right)}} + \frac{{12}}{{\left( {1 - 4{z^{ - 1}}} \right)}}\;\)

    For stable system, ROC must include the unit circle.

    \(ROC:\frac{1}{3} < \left| z \right| < 4\) 

    \(h\left( n \right) = - 1{\left( {\frac{1}{3}} \right)^n}u\left( n \right) - {124^n}\;u\left( { - n - 1} \right)\) 

    h(0) = - 1 

  • Question 3
    1 / -0
    A sequence u[n] is defined as \(u\left[ n \right] = \left\{ {\begin{array}{*{20}{c}}{1,\;if\;n \ge 0}\\{0,\;if\;n < 0}\end{array}} \right.\) for n = {-∞, …, -1,0,1, …, ∞}. The z-transform of u[n] is U(z). The region of convergence for which the z-transform of u[n] exists is
    Solution

    Given signal is

    \(u\left[ n \right] = \left\{ {\begin{array}{*{20}{c}}{1,\;if\;n \ge 0}\\{0,\;if\;n < 0}\end{array}} \right.\)

    z transform for the given signal is

    \(U\left( z \right) = \frac{1}{{1 - {z^{ - 1}}}}\)

    The region of convergence will be

    \(1 - {z^{ - 1}} > 0\)

    ⇒ |z| > 1

  • Question 4
    1 / -0
    The z-transform of a signal is given by \(H\left( z \right) = \frac{1}{8}\frac{{{z^{ - 1}}\left( {1 + {z^{ - 5}}} \right)}}{{\left( {1 + {z^{ - 1}}} \right)\left( {1 - {z^{ - 1}}} \right)}}\). It final value is –
    Solution

    Final value theorem it states that

    \(\begin{array}{l} x\left( \infty \right) = \begin{array}{*{20}{c}} {lim}\\ {z \to 1} \end{array}\left( {1 - {z^{ - 1}}} \right)x\left( z \right)\\ = \begin{array}{*{20}{c}} {lim}\\ {z \to 1} \end{array}\frac{1}{8}\left( {1 - {z^{ - 1}}} \right)\frac{{{z^{ - 1}}\left( {1 + {z^{ - 5}}} \right)}}{{\left( {1 - {z^{ - 1}}} \right)\left( {1 + {z^{ - 1}}} \right)}}\\ = \begin{array}{*{20}{c}} {lim}\\ {z \to 1} \end{array}\frac{1}{8}\frac{{{z^{ - 1}}\left( {1 + {z^{ - 5}}} \right)}}{{\left( {1 + {z^{ - 1}}} \right)}}\\ = \begin{array}{*{20}{c}} {lim}\\ {z \to 1} \end{array}\frac{1}{8}\frac{{\frac{1}{z}\left( {1 + \frac{1}{{{z^5}}}} \right)}}{{\left( {1 + \frac{1}{z}} \right)}} \end{array}\)

    \(\begin{array}{l} = \begin{array}{*{20}{c}} {lim}\\ {z \to 1} \end{array}\frac{1}{8}.\frac{{{z^5} + 1}}{{\left( {z + 1} \right)}}\\ = \frac{1}{8} = 0.125 \end{array}\)

  • Question 5
    1 / -0
    The z-transform of a sequence x[n] is given as \(X\left( z \right) = \frac{{3{z^3} + 5{z^2} \pm 5z + 4}}{{{z^2}}}\). If y[n] is the second order backward difference (Δ2xn), of x[n], then y(z) is given by
    Solution

    Concept:

    The backward difference operator Δ is defined by the equation

    Δxn = xn – xn-1

    Δ2xn = Δ(Δxn)

    = Δ (xn – xn-1)

    = Δxn – Δxn-1

    = xn – xn-1 – (xn-1 – xn-2)

    = xn – 2xn-1 + xn-2

    Calculation:

    y[n] = Δ2x[n] = xn – 2xn-1 + xn-2

    = x[n] – 2x [n - 1] + x [n - 2]

    By applying z transform,

    y(z) = X(z) – 2z-1 X(z) + z-2 X(z)

    = [1 – 2z-1 + z-2] X(z)

    \(X\left( z \right) = \frac{{3{z^3} + 5{z^2} - 5z + 4}}{{{z^2}}} = 3z + 5 - 5{z^{ - 1}} + 4{z^{ - 2}}\) 

    y(z) = [1 – 2z-1 + z-2] [3z + 5 – 5z-1 + 4z-2]

    = 3z + 5 – 5z-1 + 4z-2 – 6 – 10z-1 + 10z-2 – 8z-3 + 3z-1 + 5z-2 – 5z-3 + 4z-4

    = 3z – 1 – 12z-1 + 19z-2 – 13z-3 + 4z-4

  • Question 6
    1 / -0

    What is the signal corresponding to the following z-transform? (Where u[n] is the unit-step signal)

    \(X\left( z \right) = \frac{{6{z^2}}}{{\left( {2z - 1} \right)\left( {3z - 1} \right)}},\frac{1}{3} < \left| z \right| < \frac{1}{2}\)

    Solution

    Concept:

    The Z-transform of standard signals with their ROC are:

    \({a^n}u\left( n \right) \leftrightarrow \frac{z}{{z - a}};\left| z \right| > \left| a \right|\)

    \( - {a^n}u\left( { - n - 1} \right) \leftrightarrow \frac{z}{{z - a}};\left| z \right| < \left| a \right|\)

    Application:

    \(X\left( z \right) = \frac{{6{z^2}}}{{\left( {2z - 1} \right)\left( {3z - 1} \right)}}\)

    \( = \frac{{{z^2}}}{{\left( {z - \frac{1}{2}} \right)\left( {z - \frac{1}{3}} \right)}}\)

    \(= z[\frac{z}{{\left( {z - \frac{1}{2}} \right)\left( {z - \frac{1}{3}} \right)}}\)

    \(= z\left[ {\frac{3}{{\left( {z - \frac{1}{2}} \right)}} - \frac{2}{{\left( {z - \frac{1}{3}} \right)}}} \right]\)

    \(= \frac{{3z}}{{\left( {z - \frac{1}{2}} \right)}} - \frac{{2z}}{{\left( {z - \frac{1}{3}} \right)}}\)

    For \(\left| z \right| < \frac{1}{2},\;\frac{{3z}}{{\left( {z - \frac{1}{2}} \right)}} \leftrightarrow \; - 3{\left( {\frac{1}{2}} \right)^n}u\left[ { - n - 1} \right]\) 

    For \(\left| z \right| > \frac{1}{3},\;\frac{{2z}}{{\left( {z - \frac{1}{3}} \right)}} \leftrightarrow 2{\left( {\frac{1}{3}} \right)^n}u\left[ n \right]\) 

    \(x\left[ n \right] = - 3{\left( {\frac{1}{2}} \right)^n}u\left[ { - n - 1} \right] + 2{\left( {\frac{1}{3}} \right)^n}u\left[ n \right]\)

  • Question 7
    1 / -0
    The z transform of the signal \(x\left[ n \right] = n{\left( {\frac{1}{2}} \right)^{\left| n \right|}}\) is
    Solution

    Concept:

    The Z-transform of standard signals with their ROC are:

    \({a^n}u\left( n \right) \leftrightarrow \frac{z}{{z - a}};\left| z \right| > \left| a \right|\)

    \( - {a^n}u\left( { - n - 1} \right) \leftrightarrow \frac{z}{{z - a}};\left| z \right| < \left| a \right|\)

    Application:

    \(x\left[ n \right] = n{\left( {\frac{1}{2}} \right)^{\left| n \right|}}\)

    \( = n{\left( {\frac{1}{2}} \right)^n}u\left[ n \right] + n{\left( {\frac{1}{2}} \right)^{ - n}}u\left[ { - n - 1} \right]\)

    \({\left( {\frac{1}{2}} \right)^n}u\left[ n \right] \leftrightarrow \frac{z}{{\left( {z - \frac{1}{2}} \right)}}\;\;;\;\;\left| z \right| > \frac{1}{2}\)

    \(n{\left( {\frac{1}{2}} \right)^n}u\left[ n \right] \leftrightarrow \frac{z}{{2{{\left( {z - \frac{1}{2}} \right)}^2}}};\left| z \right| > \frac{1}{2}\)

    \({\left( {\frac{1}{2}} \right)^{ - n}}u\left[ { - n - 1} \right] \leftrightarrow \frac{{ - z}}{{\left( {z - 2} \right)}}\;\;;\;\;\left| z \right| < 2\)

    \(n{\left( {\frac{1}{2}} \right)^{ - n}}u\left[ { - n - 1} \right] \leftrightarrow \frac{{ - 2z}}{{{{\left( {z - 2} \right)}^2}}}\)

    \(X\left( z \right) = \frac{z}{{2{{\left( {z - \frac{1}{2}} \right)}^2}}} - \frac{{2z}}{{{{\left( {z - 2} \right)}^2}}}\;\;;\;\frac{1}{2} < \left| z \right| < 2\)

    \(= \frac{{3z\left( {z - 1} \right)\left( {z + 1} \right)}}{{2{{\left( {z - 2} \right)}^2}{{\left( {z - \frac{1}{2}} \right)}^2}}}\;\;;\;\frac{1}{2} < \left| z \right| < 2\)

  • Question 8
    1 / -0

    The following is known about a discrete-time LTI system with input x[n] and output y[n]:

    1. If x[n] = (-2)n for all n, then y[n] = 0 for all n.

    2. If \(x\left[ n \right] = {\left( {\frac{1}{2}} \right)^n}u\left[ n \right]\) for all n, then y[n] for all n is of the form \(y\left[ n \right] = \delta \left[ n \right] + a{\left( {\frac{1}{4}} \right)^n}u\left[ n \right]\).

    The value of constant ‘a’ is

    Solution

    \(x\left[ n \right] = {\left( {\frac{1}{2}} \right)^n}u\left[ n \right]\) 

    \(y\left[ n \right] = \delta \left[ n \right] + a{\left( {\frac{1}{4}} \right)^n}u\left[ n \right]\) 

    \(H\left( z \right) = \frac{{Y\left( z \right)}}{{X\left( z \right)}}\) 

    \(= \frac{{1 + \left( {\frac{a}{{1 - \frac{1}{4}{z^{ - 1}}}}} \right)}}{{\frac{1}{{1 - \left( {\frac{1}{2}{z^{ - 1}}} \right)}}}}\) 

    \(= \frac{{\left( {1 + a} \right) - \frac{1}{4}{z^{ - 1}}}}{{\left( {1 - \frac{1}{4}{z^{ - 1}}} \right)\left( {1 - \frac{1}{2}{z^{ - 1}}} \right)}}\) 

    ROC of \(Y\left( z \right)\;:\left| z \right| > \frac{1}{4}\) 

    ROC of \(X\left( z \right)\;:\left| z \right| > \frac{1}{2}\)

    ROC of \(H\left( z \right)\;:\left| z \right| > \frac{1}{2}\)

    It is given that the output of the system to the input x[n] = (-2)n is y[n] = 0

    So, H(-2) = 0

    \(H\left( z \right) = \frac{{\left( {1 + a} \right) - \frac{1}{4}{z^{ - 1}}}}{{\left( {1 - \frac{1}{4}{z^{ - 1}}} \right)\left( {1 - \frac{1}{2}{z^{ - 1}}} \right)}}\) 

    H(-2) = 0

    \( \Rightarrow \left( {1 + a} \right) - \frac{1}{4}\left( {\frac{1}{{ - 2}}} \right) = 0\) 

    \(\Rightarrow 1 + a = \frac{{ - 1}}{8}\) 

    \(\Rightarrow a = \frac{{ - 9}}{8} = - 1.125\)

  • Question 9
    1 / -0
    The system represented by the difference equation \(y\left[ n \right] - 2\;y\left[ {n - 2} \right] = x\left[ n \right] - \frac{1}{2}x\left[ {n - 1} \right]\) is
    Solution

    \(y\left[ n \right] - 2\;y\left[ {n - 2} \right] = x\left[ n \right] - \frac{1}{2}x\left[ {n - 1} \right]\)

    By applying z transform

    \(H\left( z \right) = \frac{{z\left( {z - \frac{1}{2}} \right)}}{{{z^2} - 2}}\)

    Zeros at, \(z = 0,\frac{1}{2}\)

    Poles at, \(z = \pm \sqrt 2 \)

    Not all poles are inside |z| = 1, the system is not stable

    Not all poles and zeros and inside |z| = 1, the system is not minimum phase

    As the system is depending upon only past values but not the future inputs, the system is causal.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now