\(x\left[ n \right] = {\left( {\frac{1}{2}} \right)^n}u\left[ n \right]\)
\(y\left[ n \right] = \delta \left[ n \right] + a{\left( {\frac{1}{4}} \right)^n}u\left[ n \right]\)
\(H\left( z \right) = \frac{{Y\left( z \right)}}{{X\left( z \right)}}\)
\(= \frac{{1 + \left( {\frac{a}{{1 - \frac{1}{4}{z^{ - 1}}}}} \right)}}{{\frac{1}{{1 - \left( {\frac{1}{2}{z^{ - 1}}} \right)}}}}\)
\(= \frac{{\left( {1 + a} \right) - \frac{1}{4}{z^{ - 1}}}}{{\left( {1 - \frac{1}{4}{z^{ - 1}}} \right)\left( {1 - \frac{1}{2}{z^{ - 1}}} \right)}}\)
ROC of \(Y\left( z \right)\;:\left| z \right| > \frac{1}{4}\)
ROC of \(X\left( z \right)\;:\left| z \right| > \frac{1}{2}\)
ROC of \(H\left( z \right)\;:\left| z \right| > \frac{1}{2}\)
It is given that the output of the system to the input x[n] = (-2)n is y[n] = 0
So, H(-2) = 0
\(H\left( z \right) = \frac{{\left( {1 + a} \right) - \frac{1}{4}{z^{ - 1}}}}{{\left( {1 - \frac{1}{4}{z^{ - 1}}} \right)\left( {1 - \frac{1}{2}{z^{ - 1}}} \right)}}\)
H(-2) = 0
\( \Rightarrow \left( {1 + a} \right) - \frac{1}{4}\left( {\frac{1}{{ - 2}}} \right) = 0\)
\(\Rightarrow 1 + a = \frac{{ - 1}}{8}\)
\(\Rightarrow a = \frac{{ - 9}}{8} = - 1.125\)