Concept:
In cylindrical coordinates; for a given vector \(\vec A\)
\(\vec A = {A_p}\widehat {{a_\rho }} + {A_\phi }\widehat {{a_\phi }} + {A_z}\widehat {{a_z}}\)
\(\nabla \times \vec A = \frac{1}{\rho }\left| {\begin{array}{*{20}{c}} {\widehat {{a_\rho }}}&{P\widehat {{a_\phi }}}&{\widehat {{a_z}}}\\ {\frac{\partial }{{\partial \rho }}}&{\frac{\partial }{{\partial \phi }}}&{\frac{\partial }{{\partial z}}}\\ {{A_\rho }}&{\rho {A_\phi }}&{{A_z}} \end{array}} \right|\)
Calculation:
\(\vec A = 2\rho \cos \phi \widehat {{a_z}}\)
\(\nabla \times \vec A = \frac{1}{\rho }\left| {\begin{array}{*{20}{c}} {\widehat {{a_\rho }}}&{\rho \widehat {{a_\phi }}}&{\widehat {{a_z}}}\\ {\frac{\partial }{{\partial \rho }}}&{\frac{\partial }{{\partial \phi }}}&{\frac{\partial }{{\partial z}}}\\ 0&{\rho .0}&{2\rho \cos \phi } \end{array}} \right|\)
\(= \frac{1}{\rho }\left[ {\widehat {{a_\rho }}\left( {\frac{\partial }{{\partial \phi }} \cdot 2\rho \cos \phi } \right) - \rho \widehat {{a_\phi }}\left( {\frac{\partial }{{\partial \rho }} \cdot 2\rho \cos \phi } \right)} \right]\)
\( = \frac{1}{\rho }\left[ { - 2\rho \sin \phi \widehat {{a_\rho }} - 2\rho \cos \phi \widehat {{a_\phi }}} \right] = \left( { - 2\sin \phi } \right)\widehat {{a_\rho }} - \left( {2\cos \phi } \right)\widehat {{a_\phi }}\)
\(\nabla \times \vec A\left( {at\;\left( {4,\pi ,0} \right)} \right) = - 2\left( {\sin \pi } \right)\widehat {{a_\rho }} - 2\cos \left( \pi \right)\widehat {{a_\phi }} = 2\widehat {{a_\phi }}\)