Self Studies
Selfstudy
Selfstudy

Electromagnetic Fields Test 1

Result Self Studies

Electromagnetic Fields Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A spherical drop of mercury of radius R has a capacitance given by ‘C’. If two such drops combine to form a single larger drop, what is its capacitance?
    Solution

    The new drop has twice the volume of the smaller drop.

    \({V_1} = \frac{4}{3}\pi {R^3}\) 

    Let the radius of the larger drop is R2

    The volume of the larger drop, \({V_2} = \frac{4}{3}\pi R_2^3\) 

    V2 = 2 V1

    \( \Rightarrow \frac{4}{3}\pi R_2^3 = 2 \times \frac{4}{3}\pi {R^3}\) 

    ⇒ R2 = 21/3 R = 1.26 R

    Capacitance = 4πε0 R2 = 5.04 π ε0 R

    New capacitance = 1.26 C

  • Question 2
    1 / -0
    A uniform volume charge density of 0.2 μ c/m3 is present throughout the spherical shell extending from r = 4 cm to r = 5 cm. If ρv = 0 elsewhere, then total charge present throughout the shell is ______ 
    Solution

    Charge density ρv = 0.2 μ c/m3

    r1 = 4 cm, r2 = 5 cm

    Total charge \(Q = \mathop \smallint \nolimits_{Vol} {\rho _v}dv = \mathop \smallint \limits_{r = 0.04}^{0.05} \mathop \smallint \limits_{\theta = 0}^\pi \mathop \smallint \limits_{\phi = 0}^{2\pi } \left( {0.2 \times {{10}^{ - 6}}{r^2}\sin \theta } \right)drd\theta d\phi \) 

    \( = \left( {0.2} \right)\left( {2\pi } \right) \times \left( {\frac{{{r^3}}}{3}} \right)_{0.04}^{0.05}\left( { - \cos \theta } \right)_{\theta = 0}^\pi \) 

    \(= \frac{{0.4\pi }}{3}\left( {{{0.05}^3} - {{0.04}^3}} \right)\left( 2 \right) \times {10^{ - 6}}\) 

    Q = 51.103 pC

  • Question 3
    1 / -0

    A parallel plate capacitor has plates of area A and separation d and is charged to a potential difference V. The charging battery is then disconnected, and the plates are pulled apart until their separation is 2d.

    Which of the following statements is/are true?
    Solution

    The capacitance of a parallel plate capacitor is

    \({C_1} = \frac{{{\varepsilon _0}A}}{d}\) 

    When the distance of separation becomes 2d,

    \({C_2} = \frac{{{\varepsilon _0}A}}{{2d}}\) 

    ⇒ C1 = 2C2

     Q = CV

    C1V1 = C2V2

    ⇒ 2 C2 V = C2 V2

    ⇒ V2 = 2V

    Initial stored energy, \({u_i} = \frac{1}{2}\;{C_1}{V^2}\) 

    \(= \frac{1}{2} \times \frac{{{\varepsilon _0}A}}{d}{V^2} = \frac{{{\varepsilon _0}A}}{{2d}}{V^2}\) 

    Final stored energy, \({u_f} = \frac{1}{2}{C_2}{V^2}\) 

    \(= \frac{1}{2} \times \frac{{{\varepsilon _0}A}}{{2d}}{\left( {2V} \right)^2} = \frac{{{\varepsilon _0}A}}{d}{V^2}\) 

    The work required to separate the plates is

    \({\rm{\Delta }}W = {u_f} - {u_t} = \frac{{{\varepsilon _0}A}}{d}{V^2} - \frac{{{\varepsilon _0}A}}{{2d}}{V^2}\) 

    \(= \frac{{{\varepsilon _0}A}}{{2d}}{V^2}\) 

  • Question 4
    1 / -0

    Given a parallel plate capacitor, dielectric filled, with area A = 100 cm2, charge Q = 890 nC, and electric field E = 1.4 kV/mm.

    Which of the following statements is/are true?
    Solution

    If there were no dielectric the field between the plates would be given by Gauss’s law as

    \({E_0} = \frac{q}{{A{\varepsilon _0}}}\) 

    \( = \frac{{890\; \times \;{{10}^{ - 9}}}}{{100\; \times \;{{10}^{ - 4}}\; \times\; 8.85\; \times \;{{10}^{ - 12}}}} = 1.01 \times {10^7}V/m\) 

    The dielectric constant is,

    \(k = \frac{{{E_0}}}{E} = \frac{{1.01\; \times \;{{10}^7}}}{{1.4\; \times \;{{10}^6}}} = 7.2\) 

    Total charge, qtot = ε0 E A

    = 8.85 × 10-12 × 1.4 × 106 × 10-2

    = 124 nC

    qtot = q – q1

    Induced charge, Q’ = Q - Qtot

    = 890 – 124 = 766 nC

  • Question 5
    1 / -0
    For a given vector A\(2\rho \cos \phi\) az in cylindrical coordinates, the value of \(\nabla \times A\) at (4,π, 0) would be
    Solution

    Concept:

    In cylindrical coordinates; for a given vector \(\vec A\)

    \(\vec A = {A_p}\widehat {{a_\rho }} + {A_\phi }\widehat {{a_\phi }} + {A_z}\widehat {{a_z}}\)

    \(\nabla \times \vec A = \frac{1}{\rho }\left| {\begin{array}{*{20}{c}} {\widehat {{a_\rho }}}&{P\widehat {{a_\phi }}}&{\widehat {{a_z}}}\\ {\frac{\partial }{{\partial \rho }}}&{\frac{\partial }{{\partial \phi }}}&{\frac{\partial }{{\partial z}}}\\ {{A_\rho }}&{\rho {A_\phi }}&{{A_z}} \end{array}} \right|\)

    Calculation:

    \(\vec A = 2\rho \cos \phi \widehat {{a_z}}\)

    \(\nabla \times \vec A = \frac{1}{\rho }\left| {\begin{array}{*{20}{c}} {\widehat {{a_\rho }}}&{\rho \widehat {{a_\phi }}}&{\widehat {{a_z}}}\\ {\frac{\partial }{{\partial \rho }}}&{\frac{\partial }{{\partial \phi }}}&{\frac{\partial }{{\partial z}}}\\ 0&{\rho .0}&{2\rho \cos \phi } \end{array}} \right|\)

    \(= \frac{1}{\rho }\left[ {\widehat {{a_\rho }}\left( {\frac{\partial }{{\partial \phi }} \cdot 2\rho \cos \phi } \right) - \rho \widehat {{a_\phi }}\left( {\frac{\partial }{{\partial \rho }} \cdot 2\rho \cos \phi } \right)} \right]\)

    \( = \frac{1}{\rho }\left[ { - 2\rho \sin \phi \widehat {{a_\rho }} - 2\rho \cos \phi \widehat {{a_\phi }}} \right] = \left( { - 2\sin \phi } \right)\widehat {{a_\rho }} - \left( {2\cos \phi } \right)\widehat {{a_\phi }}\)

    \(\nabla \times \vec A\left( {at\;\left( {4,\pi ,0} \right)} \right) = - 2\left( {\sin \pi } \right)\widehat {{a_\rho }} - 2\cos \left( \pi \right)\widehat {{a_\phi }} = 2\widehat {{a_\phi }}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now