Concept:
In a single-phase fully controlled bridge converter,
The average output voltage, \({V_0} = \frac{{2{V_m}}}{\pi }\cos \alpha \)
The average load current, \({I_0} = \frac{{{V_0}}}{R}\)
\({V_{an}} = \frac{{2\sqrt 2 }}{\pi }{V_i}\left[ {\frac{{\cos \left( {2n + 1} \right)\alpha }}{{2n + 1}} - \frac{{\cos \left( {2n - 1} \right)\alpha }}{{2n - 1}}} \right]\)
\({V_{bn}} = \frac{{2\sqrt 2 }}{\pi }{V_i}\left[ {\frac{{\sin \left( {2n + 1} \right)\alpha }}{{2n + 1}} - \frac{{\sin \left( {2n - 1} \right)\alpha }}{{2n - 1}}} \right]\)
The RMS value of the nth harmonic is,
\({V_{0n}} = \frac{1}{{\sqrt 2 }}\sqrt {V_{an}^2 + V_{bn}^2} \)
The impedance offered by the load at nth harmonic frequency is given by
\({Z_n} = \sqrt {{R^2} + {{\left( {2n\omega L} \right)}^2}} \)
Calculation:
The average dc output voltage,
\({V_{aV}} = \frac{{2\;{V_m}}}{\pi }\cos \alpha = 179.33\;V\)
Average output load current \( = \frac{{{V_0}}}{{{R_L}}} = 17.93\;A\)
The harmonic components, Va3 = 10.25 V
Vb3 = 35.5 V
V03 RMS = 26.126 V
\({Z_3} = \sqrt {{{\left( {{R_L}} \right)}^2} + {{\left( {6 \times 2\pi \times 50 \times 50 \times {{10}^{ - 3}}} \right)}^2}} = 94.18\;{\rm{\Omega }}\)
\({I_{3RMS}} = \frac{{{V_{03\;RMS}}}}{{{Z_3}}} = 0.2756\;A = 1.54\% \;of\;{I_0}\)