Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    In the equation \(AX = B,\;A = \left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&0&{\frac{1}{{\sqrt 2 }}}\\0&1&0\\{\frac{1}{{\sqrt 2 }}}&0&{\frac{{ - 1}}{{\sqrt 2 }}}\end{array}} \right],\;X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}0\\1\\{ - \sqrt 2 }\end{array}} \right]\), where A is an orthogonal matrix, the sum of the unknowns, x + y + z = _______

    Solution

    Concept:

    A matrix is said to be symmetric matrix if AT = A

    A matrix is said to be orthogonal matrix if AAT = I i.e. AT = A-1

    Calculation:

    \({A^T} = A = \left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&0&{\frac{1}{{\sqrt 2 }}}\\0&1&0\\{\frac{1}{{\sqrt 2 }}}&0&{\frac{{ - 1}}{{\sqrt 2 }}}\end{array}} \right]\) 

    So, A is a symmetric matrix.

    It is given that. A is orthogonal matrix.

    AT = A-1

    A = A-1

    AX = B

    X = A-1B = AB

    \( \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&0&{\frac{1}{{\sqrt 2 }}}\\0&1&0\\{\frac{1}{{\sqrt 2 }}}&0&{\frac{{ - 1}}{{\sqrt 2 }}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0\\1\\{ - \sqrt 2 }\end{array}} \right]\) 

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 1}\\1\\{ + 1}\end{array}} \right]\) 

    x + y + z = -1 + 1 + 1 = 1

  • Question 2
    1 / -0

    Let \(A = \left( {\begin{array}{*{20}{c}} 1&1&1&1\\ 1&2&{ - 1}&\lambda \\ 5&{ 7}&1&{{\lambda ^2}} \end{array}} \right),\;\lambda \in R\). The rank of A is 2 if λ = _____

    Solution

    \(A = \left( {\begin{array}{*{20}{c}} 1&1&1&1\\ 1&2&{ - 1}&\lambda \\ 5&{ 7}&1&{{\lambda ^2}} \end{array}} \right)\) 

    R2 → R2 – R1,

    R3 → R3 – 5R1

    \(A = \left[ {\begin{array}{*{20}{c}} 1&1&1&1\\ 0&1&{ - 2}&{\lambda - 1}\\ 0&2&{ - 4}&{{\lambda ^2} - 5} \end{array}} \right]\) 

    R3 → R3 – 2R2,

    \(A = \left[ {\begin{array}{*{20}{c}} 1&1&1&1\\ 0&1&{ - 2}&{\lambda - 1}\\ 0&0&0&{{\lambda ^2} - 5 - 2\lambda + 2} \end{array}} \right]\) 

    Rank of the matrix A = number of non-zero rows

    Given that Rank of A = 2.

    So, the last row must be zero.

    λ2 – 2λ – 3 = 0

    λ2 – 3λ + λ – 3 = 0

    λ(λ - 3) + 1(λ - 3) = 0

    λ = -1, 3   

  • Question 3
    1 / -0
    The value of t so that \(\left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right]\) is an eigen vector of \(\left[ {\begin{array}{*{20}{c}} 3&4\\ 2&t \end{array}} \right]\) is ______
    Solution

    Concept:

    Eigen vector (X) that corresponding to Eigen value (λ) satisfies the equation AX = λX.

    Calculation:

    \(A = \left[ {\begin{array}{*{20}{c}} 3&4\\ 2&t \end{array}} \right]\)

    \(X = \left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right]\)

    Let λ is an Eigen value,

    AX = λX

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 3&4\\ 2&t \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right] = \lambda \left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right]\)

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 8\\ {8 - t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {4\lambda }\\ { - \lambda } \end{array}} \right]\)

    By comparing both the sides,

    8 = 4λ ⇒ λ = 2

    8 – t = -λ ⇒ 8 – t = -2 ⇒ t = 10 

  • Question 4
    1 / -0

    For the system of linear equations

    x + 3y – 2z = -1

    5y + 3z = -8

    x – 2y – 5z = 7

    Which of the following statements are true?
    Solution

    Concept:

    Consider the system of m linear equations

    a11 x1 + a12 x2 + … + a1n xn = b1

    a21 x1 + a22 x2 + … + a2n xn = b2

    am1 x1 + am2 x2 + … + amn xn = bm

    The above equations containing the n unknowns x1, x2, …, xn. To determine whether the above system of equations is consistent or not, we need to find the rank of following matrices.

    \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}\\ \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}} \end{array}} \right]\) and \(\left[ {A{\rm{|}}B} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}&{{b_1}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}&{{b_2}}\\ \ldots & \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}}&{{b_m}} \end{array}} \right]\)

    A is the coefficient matrix and [A|B] is called as augmented matrix of the given system of equations.

    We can find the consistency of the given system of equations as follows:

    (i) If the rank of matrix A is equal to rank of an augmented matrix and it is equal to the number of unknowns, then the system is consistent and there is a unique solution.

    The rank of A = Rank of augmented matrix = n

    (ii) If the rank of matrix A is equal to rank of an augmented matrix and it is less than the number of unknowns, then the system is consistent and there are an infinite number of solutions.

    The rank of A = Rank of augmented matrix < n

    (iii) If the rank of matrix A is not equal to rank of the augmented matrix, then the system is inconsistent, and it has no solution.

    The rank of A ≠ Rank of an augmented matrix

    Calculation:

    The given system of equations can be represented in a matrix form as shown below.

    \(A = \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 1&{ - 2}&{ - 5} \end{array}} \right],X = \left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} { - 1}\\ { - 8}\\ 7 \end{array}} \right]\)

    The Augmented matrix can be written by

    \([A|B] = \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 1&{ - 2}&{ - 5} \end{array}{\rm{|}}\begin{array}{*{20}{c}} { - 1}\\ { - 8}\\ 7 \end{array}} \right]\)

    R3 → R3 – R1

    \(= \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 0&{ - 5}&{ - 3} \end{array}{\rm{|}}\begin{array}{*{20}{c}} { - 1}\\ { - 8}\\ 8 \end{array}} \right]\)

    R3 → R3 + R2

    \(= \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2}\\ 0&5&3\\ 0&0&0 \end{array}{\rm{|}}\begin{array}{*{20}{c}} { - 1}\\ { - 8}\\ 0 \end{array}} \right]\)

    The rank of matrix A = 2

    The rank of Augmented matrix = 2

    Rank of A = Rank of augmented matrix = 2 < n = 3

    Hence, the system is consistent and has infinitely many solutions.
  • Question 5
    1 / -0

    The determinant value of \(A = \left[ {\begin{array}{*{20}{c}} {\cos x}&{ - \sin x}&1\\ {\sin x}&{\cos x}&1\\ {\cos \left( {x + y} \right)}&{ - \sin \left( {x + y} \right)}&0 \end{array}} \right]\) lies in the interval

    Solution

    \(A = \left[ {\begin{array}{*{20}{c}} {\cos x}&{ - \sin x}&1\\ {\sin x}&{\cos x}&1\\ {\cos \left( {x + y} \right)}&{ - \sin \left( {x + y} \right)}&0 \end{array}} \right]\)

    Determinant value of A is

    \(\left| A \right| = \left| {\begin{array}{*{20}{c}} {\cos x}&{ - \sin x}&1\\ {\sin x}&{\cos x}&1\\ {\cos \left( {x + y} \right)}&{ - \sin \left( {x + y} \right)}&0 \end{array}} \right|\)

    = cos x (sin (x + y)) + sin x (- cos (x + y)) + (- sin x sin (x + y) – cos x cos (x + y))

    = cos x sin (x + y) – sin x cos (x + y) – sin x sin (x + y) – cos x cos (x + y)

    = cos x (sin (x + y) – cos (x + y)) – sin x (cos (x + y) + sin (x + y))

    = cos x (sin x cos y + cos x sin y – cos x cos y + sin x sin y) – sin x (cos x cos y – sin x sin y + sin x cos y + cos x sin y)

    = sin x cos x cos y + cos2 x sin y – cos2 x cos y + sin x sin y cos x – sin x cos x cos y + sin2 x sin y – sin2 x cos y – sin x cos x sin y

    \( = \sin y - \cos y = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }}\sin y - \frac{1}{{\sqrt 2 }}\cos y} \right) = \sqrt 2 \sin \left( {y - \frac{\pi }{4}} \right)\)

    The value of sin x lies in the interval [-1, 1]

    Therefore, determinant lies in the interval \(\left[ { - \sqrt 2 ,\;\sqrt 2 } \right]\)

  • Question 6
    1 / -0
    Let \(P = \left[ {\begin{array}{*{20}{c}} 1&3\\ 0&1 \end{array}} \right]\) and \(D = \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&{ - 2} \end{array}} \right]\). If A = PDP-1 then A5 is
    Solution

    Concept:

    Diagonalization of matrix:

    If a square matrix Q of order n has n linearly independent Eigen vectors, then matrix P can be found such that \({P^{ - 1}}QP\) is a diagonal matrix.

    Let Q be a square matrix of order 3.

    Let λ1, λ2, and λ3 be Eigen values of matrix Q and \({X_1} = \left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{y_1}}\\ {{z_1}} \end{array}} \right],\;{X_2} = \left[ {\begin{array}{*{20}{c}} {{x_2}}\\ {{y_2}}\\ {{z_2}} \end{array}} \right],\;{X_3} = \left[ {\begin{array}{*{20}{c}} {{x_3}}\\ {{y_3}}\\ {{z_3}} \end{array}} \right]\) be the corresponding Eigen vectors.

    Let denote the square matrix \(\left[ {\begin{array}{*{20}{c}} {{X_1}}&{{X_2}}&{{X_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{x_1}}&{{x_2}}&{{x_3}}\\ {{y_1}}&{{y_2}}&{{y_3}}\\ {{z_1}}&{{z_2}}&{{z_3}} \end{array}} \right]\) by P.

    Now, the given matrix A can be diagonalized by \(D = {P^{ - 1}}QP\)

    Or the matrix A can be represented by \(Q = PD{P^{ - 1}}\)

    Where D is the diagonal matrix and it is represented by \(D = \left[ {\begin{array}{*{20}{c}} {{\lambda _1}}&0&0\\ 0&{{\lambda _2}}&0\\ 0&0&{{\lambda _3}} \end{array}} \right]\)

    Properties of Eigen values:

    The sum of Eigen values of a matrix A is equal to the trace of that matrix A

    The product of Eigen values of a matrix A is equal to the determinant of that matrix A

    Calculation:

    \(P = \left[ {\begin{array}{*{20}{c}} 1&3\\ 0&1 \end{array}} \right]\) 

    \({P^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 1&{ - 3}\\ 0&1 \end{array}} \right]\) 

    The Eigen values of A = 2, -2

    The Eigen vectors of \(A = \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right],\;\left[ {\begin{array}{*{20}{c}} 3\\ 1 \end{array}} \right]\) 

    The Eigen values of A5 = 25, -25 = 32, -32

    The Eigen vectors of \({A^5} = \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right],\;\left[ {\begin{array}{*{20}{c}} 3\\ 1 \end{array}} \right]\) 

    A5 = P D P-1

    \( = \left[ {\begin{array}{*{20}{c}} 1&3\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {32}&0\\ 0&{ - 32} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 3}\\ 0&1 \end{array}} \right]\) 

    \( = \left[ {\begin{array}{*{20}{c}} {32}&{ - 96}\\ 0&{ - 32} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 3}\\ 0&1 \end{array}} \right]\) 

    \( = \left[ {\begin{array}{*{20}{c}} {32}&{ - 192}\\ 0&{ - 32} \end{array}} \right]\) 

  • Question 7
    1 / -0

    Consider the following system of equations in x, y, z:

    x + 2y + 2z = 1

    x + ay + 3z = 3

    x + 11y + az = b

    For what positive value of a, the system doesn’t have a unique solution?
    Solution

    Concept:

    Consider the system of m linear equations

    a11 x1 + a12 x2 + … + a1n xn = b1

    a21 x1 + a22 x2 + … + a2n xn = b2

    am1 x1 + am2 x2 + … + amn xn = bm

    The above equations containing the n unknowns x1, x2, …, xn. To determine whether the above system of equations is consistent or not, we need to find the rank of following matrices.

    \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}\\ \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}} \end{array}} \right]\) and \(\left[ {A{\rm{|}}B} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}&{{b_1}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}&{{b_2}}\\ \ldots & \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}}&{{b_m}} \end{array}} \right]\)

    A is the coefficient matrix and [A|B] is called as augmented matrix of the given system of equations.

    We can find the consistency of the given system of equations as follows:

    (i) If the rank of matrix A is equal to rank of an augmented matrix and it is equal to the number of unknowns, then the system is consistent and there is a unique solution.

    The rank of A = Rank of augmented matrix = n

    (ii) If the rank of matrix A is equal to rank of an augmented matrix and it is less than the number of unknowns, then the system is consistent and there are an infinite number of solutions.

    The rank of A = Rank of augmented matrix < n

    (iii) If the rank of matrix A is not equal to rank of the augmented matrix, then the system is inconsistent, and it has no solution.

    The rank of A ≠ Rank of an augmented matrix

    Calculation:

    The given system of equations can be represented in a matrix form as shown below.

    \(A = \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 1&a&3\\ 1&{11}&a \end{array}} \right],X = \left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 1\\ 3\\ b \end{array}} \right]\)

    The Augmented matrix can be written by

    \([A|B] = \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 1&a&3\\ 1&{11}&a \end{array}{\rm{|}}\begin{array}{*{20}{c}} 1\\ 3\\ b \end{array}} \right]\)

    R3 → R3 – R1

    R2 → R2 – R1

    \(= \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 0&{a - 2}&1\\ 0&9&{a - 2} \end{array}{\rm{|}}\begin{array}{*{20}{c}} 1\\ 2\\ {b - 1} \end{array}} \right]\)

    \({R_3} \to {R_3} - \left( {\frac{9}{{a - 2}}} \right){R_2}\)

    \(= \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 0&{a - 2}&1\\ 0&0&{\frac{{{{\left( {a - 2} \right)}^2} - 9}}{{a - 2}}} \end{array}{\rm{|}}\begin{array}{*{20}{c}} 1\\ 2\\ {\frac{{\left( {a - 2} \right)\left( {b - 1} \right) - 18}}{{a - 2}}} \end{array}} \right]\)

    The system ho have a unique solution, \(\frac{{{{\left( {a - 2} \right)}^2} - 9}}{{a - 2}} \ne 0\)

    ⇒ (a - 2)2 – 9 ≠ 0

    ⇒ a – 2 ≠ ±3

    ⇒ a ≠ -1 or 5

    The system doesn’t have a unique solution for a = -1 and 5
  • Question 8
    1 / -0
    Consider the 2 × 2 matrix \(A = \left[ {\begin{array}{*{20}{c}}2&3\\x&4\end{array}} \right]\). What is the maximum value of x, for which both the Eigen values of matrix are real and positive?
    Solution

    \(A = \left[ {\begin{array}{*{20}{c}}2&3\\x&4\end{array}} \right]\)

    \(\left| {A - \lambda I} \right| = 0\)

    \( \Rightarrow \left| {\begin{array}{*{20}{c}}{2 - \lambda }&3\\x&{4 - \lambda }\end{array}} \right| = 0\)

    ⇒ (2 – λ) (4 – λ) – 3x = 0

    ⇒ λ2 – 6λ +8 – 3x = 0

    Roots of the above equation are Eigen values and let the Eigen values be λ1 and λ2

    From the properties of Eigen values,

    Sum of the Eigen values, \({\lambda _1} + {\lambda _2} = - \frac{{\left( { - 6} \right)}}{1} = 6\)

    Product of Eigen values, \({\lambda _1}{\lambda _2} = \frac{{\left( {8 - 3x} \right)}}{1} = 8 - 3x\)

    For the Eigen values to be positive, λ1λ2 > 0

    ⇒ 8 – 3x > 0

    ⇒ x < 8/3

    For roots to be real, \(\sqrt {{6^2} - 4\left( 1 \right)\left( {8 - 3x} \right)} \ge 0\)

    ⇒ 36 – 32 + 12x > 0

    ⇒ x > -1/3

    The range of for which Eigen values of matrix are real and positive is: \( - \frac{1}{3} < x < \frac{8}{3}\)

    Maximum value of x = 8/3 = 2.67
  • Question 9
    1 / -0
    If \(A = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ i&{\frac{{ - 1 + i\sqrt 3 }}{2}}&0\\ 0&{1 + 2i}&{\frac{{ - 1 - i\sqrt 3 }}{2}} \end{array}} \right]\) then the trace of A102 is
    Solution

    Given that, \(A = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ i&{\frac{{ - 1 + i\sqrt 3 }}{2}}&0\\ 0&{1 + 2i}&{\frac{{ - 1 - i\sqrt 3 }}{2}} \end{array}} \right]\)

    Let \(ω = \frac{{ - 1 -i\sqrt 3 }}{2}\)

    \(\Rightarrow {ω ^2} = \frac{{ - 1 + i\sqrt 3 }}{2}\)

    Now, \(A = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ i&ω &0\\ 0&{1 + 2i}&{{ω ^2}} \end{array}} \right]\)

    Given matrix A is a lower triangular matrix. 

    We know that the n values of a triangular matrix are diagonal elements.

    1, ω, ω2   are cube roots of unity

    13 = 1

    ω3 = 1

    2)3 =1

    Hence the  Eigenvalues of A = 1, ω, ω2

    If λ is an Eigenvalue of a matrix A, then λn is the Eigenvalue of the matrix An

    Eigenvalue of A102 = (1)102, (ω)102, (ω2)102

    = 1, ω102, ω204

    = 1, (ω3)34, (ω3)68

    = 1, 1, 1.

    We know that, a trace of a matrix = sum of eigenvalues.

    = 1 + 1 + 1 = 3
  • Question 10
    1 / -0
    If \(A = \left[ {\begin{array}{*{20}{c}}1&1&3\\5&2&6\\{ - 2}&{ - 1}&{ - 3}\end{array}} \right]\), then the value of A14 + 3A – 2I is
    Solution

    Characteristic equation: |A – λI| = 0

    \(\Rightarrow \left| {\left[ {\begin{array}{*{20}{c}}1&1&3\\5&2&6\\{ - 2}&{ - 1}&{ - 3}\end{array}} \right] - \lambda \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]} \right| = 0 \)

    \( \Rightarrow \left| {\begin{array}{*{20}{c}}{1 - \lambda }&1&3\\5&{2 - \lambda }&6\\{ - 2}&{ - 1}&{ - 3 - \lambda }\end{array}} \right| = 0\)

    ⇒ (1 – λ) (-6 + 3λ – 2λ + λ2 + 6) – 1(-15 – 5λ + 12) + 3(-5 + 4 – 2λ) = 0

    ⇒ λ3 = 0

    According to Cayley Hamilton theorem every square matrix satisfies its characteristic polynomial.

    ⇒ A3 = 0

    A14 + 3A – 2I = A12 A2 + 3A – 2I = 3A – 2I

    \(= 3\left[ {\begin{array}{*{20}{c}}1&1&3\\5&2&6\\{ - 2}&{ - 1}&{ - 3}\end{array}} \right] - 2\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3&9\\{15}&4&{18}\\{ - 6}&{ - 3}&{ - 11}\end{array}} \right]\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now