Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 12

Result Self Studies

Engineering Mathematics Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The Laplace transform of \(\frac{{\left( {1 - {e^t}} \right)}}{t}\) is
    Solution

    \(L\left( {1 - {e^t}} \right) = \frac{1}{s} - \frac{1}{{s - 1}}\)

    \(L\left( {\frac{{\left( {1 - {e^t}} \right)}}{t}} \right) = \mathop \smallint \limits_s^\infty \left( {\frac{1}{s} - \frac{1}{{s - 1}}} \right)ds\)

    \( = \left[ {\log \left( {\frac{s}{{s - 1}}} \right)} \right]_s^\infty = \log \left( {\frac{{s - 1}}{s}} \right)\)

  • Question 2
    1 / -0
    Z-transform of (n ⋅ 3n) is
    Solution

    Concept:

    The definition of z-transform is given by,

    \(X\left( z \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left( n \right){z^{ - n}}\) 

    Let the signal, x(n) = an u(n)

    The z-transform of the above-given signal is given by

    \(X\left( z \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left( n \right){z^{ - n}}\)

    \(X\left( z \right) = \mathop \sum \limits_{n = 0}^\infty {a^n}{z^{ - n}}\)

    \(z\left( {{a^n}} \right) = \frac{z}{{z - a}}\)

    Scaling property:

    If x(n) ↔ X(z), then

    an x(n) ↔ X(z/a)

    Differentiation property:

    If x(n) ↔ X(z), then

    \(n\;x\left( n \right) \leftrightarrow - z\frac{d}{{dz}}\left( {X\left( z \right)} \right)\)

    Calculation:

    \(z\left( {{3^n}} \right) = \frac{z}{{z - 3}}\)

    From the differentiation property of z-transform.

    \(z\left( {n \cdot {3^n}} \right) = - z\frac{d}{{dz}}\left( {\frac{z}{{z - 3}}} \right)\)

    \(= - z\left( {\frac{{\left( {z - 3} \right)\left( 1 \right) - z\left( 1 \right)}}{{{{\left( {z - 3} \right)}^2}}}} \right)\)

    \(= \frac{{3z}}{{{{\left( {z - 3} \right)}^2}}}\)

  • Question 3
    1 / -0
    If the steady state value of f(t) is 0.5 and its Laplace transform is given by \(F\left( s \right) = \frac{b}{{s\left( {s + 1} \right)\left( {s + a} \right)}}\), where a > 0, then which of the following is true?
    Solution

    Concept:

    Final value theorem:

    • A final value theorem allows the time domain behavior to be directly calculated by taking a limit of a frequency domain expression
    • Final value theorem states that the final value of a system can be calculated by

    \(f\left( \infty \right) = \mathop {\lim }\limits_{s \to 0} sF\left( s \right)\)

     Where F(s) is the Laplace transform of the function.

    • For the final value theorem to be applicable system should be stable in steady-state and for that real part of poles should lie in the left side of s plane.

    Initial value theorem:

    \(C\left( 0 \right) = \mathop {\lim }\limits_{t \to 0} c\left( t \right) = \mathop {\lim }\limits_{s \to \infty } sC\left( s \right)\)

    It is applicable only when the number of poles of C(s) is more than the number of zeros of C(s).

    Calculation:

    \(F\left( s \right) = \frac{b}{{s\left( {s + 1} \right)\left( {s + a} \right)}}\)

    By using final value theorem, the steady state value of f(t) is,

    \(f\left( \infty \right) = \mathop {\lim }\limits_{s \to 0} s \cdot \frac{b}{{s\left( {s + 1} \right)\left( {s + a} \right)}} = \frac{b}{a} = 0.5\) 

    a = 2b

  • Question 4
    1 / -0
    The Laplace transform of f(t) = t2 e-2t cos (3t) is,
    Solution

    Concept:

    The definition of unilateral Laplace transform is

    \(X\left( s \right) = \mathop \smallint \nolimits_0^\infty x\left( t \right){e^{ - st}}dt\)

    Laplace transform of function of f(t) is shown by L [f(t)] = F(s)

    The effect of time-shifting in the frequency domain is represented as:

    \(u\left( {t - t_0} \right) \leftrightarrow \;\frac{{{e^{ - st_0}}}}{s}\)

    By using the first shifting rule

     If L [f(t)] = F (s), then

    L [eat f(t)] = F (s – a)

    Differentiation in the frequency domain can be represented as:

    \(tf\left( t \right) \leftrightarrow - \frac{d}{{ds}}\left( {F\left( s \right)} \right)\)

    Calculation:

    f(t) = t2 e-2t cos (3t)

    \(L\left\{ {\cos 3t} \right\} = \frac{s}{{{s^2} + 9}}\)

    By using differentiation property,

    \(L\left\{ {t\cos 3t} \right\} = \frac{{ - d}}{{ds}}\left( {\frac{s}{{{s^2} + 9}}} \right)\)

    \( = - \left[ {\frac{{\left( {{s^2} + 9} \right)\left( 1 \right) - s\left( {25} \right)}}{{{{\left( {{s^2} + 9} \right)}^2}}}} \right]\)

    \(= \frac{{{s^2} - 9}}{{{{\left( {{s^2} + 9} \right)}^2}}}\)

    By using differentiation property,

    \(L\left\{ {{t^2}\cos 3t} \right\} = \frac{{ - d}}{{ds}}\left( {\frac{{{s^2} - 9}}{{{{\left( {{s^2} + 9} \right)}^2}}}} \right)\)

    \(= - \left[ {\frac{{{{\left( {{s^2} + 9} \right)}^2}\left( {25} \right) - \left( {{s^2} - 9} \right)\left( {2\left( {{s^2} + 9} \right)} \right)\left( {25} \right)}}{{{{\left( {{s^2} + 9} \right)}^4}}}} \right]\)

    \(= - \left[ {\frac{{\left( {{s^2} + 9} \right)\left( {25} \right) - \left( {2{s^2} - 18} \right)\left( {25} \right)}}{{{{\left( {{s^2} + 9} \right)}^3}}}} \right]\)

    \(= \frac{{25\left( {{{25}^2} - 18 - {s^2} - 9} \right)}}{{{{\left( {{s^2} + 9} \right)}^3}}}\)

    \(= \frac{{25\left( {{s^2} - 27} \right)}}{{{{\left( {{s^2} + 9} \right)}^3}}}\)

    By using the shifting property,

    \(L\left\{ {{e^{ - 2t}}{t^2}\cos t} \right\} = \frac{{2\left( {s + 2} \right)\left( {{{\left( {s + 2} \right)}^2} - 27} \right)}}{{{{\left( {{{\left( {s + 2} \right)}^2} + 9} \right)}^3}}}\)

    \(= \frac{{2\left( {s + 2} \right)\left( {{s^2} + 4s - 23} \right)}}{{{{\left( {{s^2} + 4s + 13} \right)}^3}}}\)

  • Question 5
    1 / -0
    If the Laplace transform of f(t) is given by \(F\left( s \right) = \frac{{3\left( {s + 3} \right)}}{{{s^2} + 65 + 8}}\), the value of f(0.5) is ______
    Solution

    \(F\left( s \right) = \frac{{3\left( {s + 3} \right)}}{{{s^2} + 65 + 8}}\) 

    By applying partial fraction method,

    \(F\left( s \right) = \frac{{3\left( {s + 3} \right)}}{{\left( {s + 2} \right)\left( {s + 4} \right)}} = \frac{A}{{\left( {s + 2} \right)}} + \frac{B}{{\left( {s + 4} \right)}}\) 

    35 + 9 = A (s + 4) + B (s + 2)

    By comparing both the sides,

    A + B = 3and 4A + 2B = 9

    A = B = 1.5

    \(F\left( s \right) = \frac{{1.5}}{{\left( {s + 2} \right)}} + \frac{{1.5}}{{\left( {s + 4} \right)}}\) 

    By applying inverse Laplace transform, we get

    f(t) = 1.5 e-2t + 1.5 e-4t

    At t = 0.5,

    \(f\left( {0.5} \right) = 1.5\left( {\frac{1}{e} + \frac{1}{{{e^2}}}} \right) = 0.7548\) 

  • Question 6
    1 / -0
    Consider the differential equation \(\frac{{dy}}{{dt}} + ay = {e^{ - bt}}\) with the initial condition y(0) = 0. Then the Laplace transform Y(s) of the solution y(t) is
    Solution

    \(\frac{{dt}}{{dt}} + ay = {e^{ - bt}}\)

    Integrating factor \(= {e^{\smallint pdt}} = {e^{at}}\)

    Solution of y is,

    \(y\left( {{e^{at}}} \right) = \smallint {e^{at}}.{e^{ - bt}}dt + c\)

    \(\Rightarrow y{e^{at}} = \frac{{{e^{\left( {a - b} \right)t}}}}{{a - b}} + c\)

    Given that, y(0) = 0

    \(\Rightarrow 0 = \frac{1}{{a - b}} + c \Rightarrow c = - \frac{1}{{\left( {a - b} \right)}}\)

    Now, the solution becomes,

    \(y{e^{at}} = \frac{{{e^{\left( {a - b} \right)t}}}}{{a - b}} - \frac{1}{{a - b}}\)

    \(\Rightarrow y\left( t \right) = \frac{{{e^{ - bt}}}}{{a - b}} - \frac{{{e^{ - at}}}}{{a - b}}\)

    Apply Laplace transform

    \(\Rightarrow y\left( s \right) = \frac{1}{{a - b}}\left[ {\frac{1}{{s + b}} - \frac{1}{{s + a}}} \right]\)

    \(\Rightarrow y\left( s \right) = \frac{1}{{\left( {s + a} \right)\left( {s + b} \right)}}\)
  • Question 7
    1 / -0

    Find the Laplace transform of \(\mathop \smallint \limits_0^\infty \frac{{{e^{ - at}} - {e^{ - bt}}}}{t}dt\)

    Solution

    Explanation:

    Let F(t) = e-at – e-bt

    {L{F(t)} = L{e-at – e-bt}

    \(= \frac{1}{{s + a}} - \frac{1}{{s - b}}\)

    Now \(L\left\{ {\frac{{{e^{ - at}} - {e^{ - bt}}}}{t}} \right\} = \mathop \smallint \limits_s^\infty \left( {\frac{1}{{\left( {s + a} \right)}} - \frac{1}{{\left( {s + b} \right)}}} \right)ds\)

    \( = \left[ {\log \left( {s - a} \right) - \log \left( {s + b} \right)} \right]_s^\infty \)

    \(= \left[ {\log \left( {\frac{{s + a}}{{s + b}}} \right)} \right]_s^\infty \)

    \( = \mathop {\lim }\limits_{s \to \infty } \log \left( {\frac{{s + a}}{{s + b}}} \right) - \log \left( {\frac{{s + a}}{{s + b}}} \right)\)

    \( = \mathop {\lim }\limits_{s \to \infty } \log \left( {\frac{{1 + a/s}}{{1 + b/s}}} \right) - \log \left[ {\frac{{s + a}}{{s + b}}} \right]\)

    \( = \log \left[ {\frac{{1 + 0}}{{1 + 0}}} \right] + \log {\left( {\frac{{s + a}}{{s + b}}} \right)^{ - 1}} = \log \left( {\frac{{s + b}}{{s + a}}} \right)\)

    ∵ By definition

    \(L\left\{ {F\left( t \right)} \right\} = \mathop \smallint \limits_o^\infty {e^{ - st}}.F\left( t \right)dt\)

    \(L\left[ {\frac{{{e^{ - at}} - {e^{ - bt}}}}{t}} \right] = \mathop \smallint \limits_0^\infty {e^{ - st}}\left[ {\frac{{{e^{ - at}} - {e^{ - bt}}}}{t}} \right]dt\)

    Put s = 0

    \(\mathop \smallint \limits_0^\infty \frac{{{e^{ - at}} - {e^{ - bt}}}}{t}dt = \log \frac{b}{a}\)

    Laplace transform of \(\mathop \smallint \limits_0^\infty \frac{{{e^{ - at}} - {e^{ - bt}}}}{t}dt\) = Laplace transform of \(\log \frac{b}{a}\)

    \( = \frac{1}{s}\log \frac{b}{a}\)

  • Question 8
    1 / -0
    If z-transform of \({u_n} = \frac{{\left( {2{z^2} - 3z} \right)}}{{\left( {3{z^2} + 4} \right)}}\) ​then uo is
    Solution

    Concept:

    By initial value theorem,

    \({u_o} = \mathop {{\rm{lt}}}\limits_{z \to \infty } U\left( z \right)\)

    Calculation:

    Given:

    \(U\left( z \right) = \frac{{2{z^2} - 3z}}{{3{z^2} + 4}}\)

    \(= \mathop {{\rm{lt}}}\limits_{z \to \infty } \;\frac{{2{z^2} - 3z}}{{3{z^2} + 4}}\)

    \(= \mathop {{\rm{lt}}}\limits_{z \to \infty } \frac{{2{z^2}\left( {1 - \frac{3}{z}} \right)}}{{3{z^2}\left( {1 + \frac{4}{{{z^2}}}} \right)}} = \frac{2}{3}\)

  • Question 9
    1 / -0
    The Fourier transform of \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 - \left| x \right|,\;\;\;\left| x \right| < 1}\\{0,\;\;\;\;\left| x \right| > 1}\end{array}} \right.\) is
    Solution

    \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 - \left| x \right|,\;\; - 1 \le x < 1}\\{0,\;\;\;\;\;otherwise}\end{array}} \right.\) 

    \(X\left( \omega \right) = \mathop \smallint \limits_{ - 1}^1 \left( {1 - \left| x \right|} \right){e^{ - j\omega x}}dx\) 

    \( = \mathop \smallint \limits_{ - 1}^0 \left( {1 + x} \right){e^{ - j\omega x}}dx + \mathop \smallint \limits_0^1 \left( {1 - x} \right){e^{ - j\omega x}}dx\) 

    \(\mathop \smallint \limits_{ - 1}^0 \left( {1 + x} \right){e^{ - j\omega x}}dx = \left( {1 + x} \right)\left[ {\frac{{{e^{ - j\omega x}}}}{{ - j\omega }}} \right] - \smallint \frac{{{e^{ - j\omega x}}}}{{ - j\omega }}dx\) 

    \( = \left[ {\left( {1 + x} \right)\left[ {\frac{{{1^{ - j\omega x}}}}{{ - j\omega }}} \right] - \left[ {\frac{{{e^{ - j\omega x}}}}{{{{\left( {j\omega } \right)}^2}}}} \right]} \right]_{ - 1}^0\) 

    \( = \left( {\frac{1}{{ - j\omega }} - \frac{1}{{{{\left( {j\omega } \right)}^2}}}} \right) - \left( {0 - \frac{{{e^{j\omega }}}}{{{{\left( {j\omega } \right)}^2}}}} \right)\) 

    \(= \frac{1}{{ - j\omega }} - \frac{1}{{{{\left( {j\omega } \right)}^2}}} + \frac{{{e^{j\omega }}}}{{{{\left( {j\omega } \right)}^2}}}\) 

    \(\mathop \smallint \limits_0^1 \left( {1 - x} \right){e^{ - j\omega x}}dx\) 

    \(= \left( {1 - x} \right)\left[ {\frac{{{e^{ - j\omega x}}}}{{ - j\omega }}} \right] - \smallint \frac{{{e^{ - j\omega x}}}}{{ - j\omega }}\left( { - 1} \right)dx\) 

    \( = \left[ {\left( {1 - x} \right)\left[ {\frac{{{e^{ - j\omega x}}}}{{ - j\omega }}} \right] + \left[ {\frac{{{e^{ - j\omega x}}}}{{{{\left( {j\omega } \right)}^2}}}} \right]} \right]_0^1\) 

    \( = \left[ {0 + \frac{{{e^{ - j\omega }}}}{{{{\left( {j\omega } \right)}^2}}}} \right] - \left[ {\frac{1}{{ - j\omega }} + \frac{1}{{{{\left( {j\omega } \right)}^2}}}} \right]\) 

    \(= \frac{{{e^{ - j\omega }}}}{{{{\left( {j\omega } \right)}^2}}} + \frac{1}{{j\omega }} - \frac{1}{{{{\left( {j\omega } \right)}^2}}}\) 

    \(X\left( \omega \right) = \frac{{ - 1}}{{j\omega }} - \frac{1}{{{{\left( {j\omega } \right)}^2}}} + \frac{{{e^{j\omega }}}}{{{{\left( {j\omega } \right)}^2}}} + \frac{{{e^{ - j\omega }}}}{{{{\left( {j\omega } \right)}^2}}} + \frac{1}{{j\omega }} - \frac{1}{{{{\left( {j\omega } \right)}^2}}}\) 

    \(= \frac{{ - 2}}{{{{\left( {j\omega } \right)}^2}}} + \frac{{{e^{j\omega }} + {e^{ - j\omega }}}}{{{{\left( {j\omega } \right)}^2}}}\) 

    \(= \frac{2}{{{{\left( {j\omega } \right)}^2}}}\left[ { - 1 + \frac{{\left( {{e^{j\omega }} - {e^{ - j\omega }}} \right)2}}{2}} \right] = \frac{2}{{{{\left( {j\omega } \right)}^2}}}\left[ {1 - 2\cos j\omega } \right]\) 

    \(= \frac{2}{{{s^2}}}\left[ {1 - 2\cos s} \right]\) 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now