Concept:
The definition of unilateral Laplace transform is
\(X\left( s \right) = \mathop \smallint \nolimits_0^\infty x\left( t \right){e^{ - st}}dt\)
Laplace transform of function of f(t) is shown by L [f(t)] = F(s)
The effect of time-shifting in the frequency domain is represented as:
\(u\left( {t - t_0} \right) \leftrightarrow \;\frac{{{e^{ - st_0}}}}{s}\)
By using the first shifting rule
If L [f(t)] = F (s), then
L [eat f(t)] = F (s – a)
Differentiation in the frequency domain can be represented as:
\(tf\left( t \right) \leftrightarrow - \frac{d}{{ds}}\left( {F\left( s \right)} \right)\)
Calculation:
f(t) = t2 e-2t cos (3t)
\(L\left\{ {\cos 3t} \right\} = \frac{s}{{{s^2} + 9}}\)
By using differentiation property,
\(L\left\{ {t\cos 3t} \right\} = \frac{{ - d}}{{ds}}\left( {\frac{s}{{{s^2} + 9}}} \right)\)
\( = - \left[ {\frac{{\left( {{s^2} + 9} \right)\left( 1 \right) - s\left( {25} \right)}}{{{{\left( {{s^2} + 9} \right)}^2}}}} \right]\)
\(= \frac{{{s^2} - 9}}{{{{\left( {{s^2} + 9} \right)}^2}}}\)
By using differentiation property,
\(L\left\{ {{t^2}\cos 3t} \right\} = \frac{{ - d}}{{ds}}\left( {\frac{{{s^2} - 9}}{{{{\left( {{s^2} + 9} \right)}^2}}}} \right)\)
\(= - \left[ {\frac{{{{\left( {{s^2} + 9} \right)}^2}\left( {25} \right) - \left( {{s^2} - 9} \right)\left( {2\left( {{s^2} + 9} \right)} \right)\left( {25} \right)}}{{{{\left( {{s^2} + 9} \right)}^4}}}} \right]\)
\(= - \left[ {\frac{{\left( {{s^2} + 9} \right)\left( {25} \right) - \left( {2{s^2} - 18} \right)\left( {25} \right)}}{{{{\left( {{s^2} + 9} \right)}^3}}}} \right]\)
\(= \frac{{25\left( {{{25}^2} - 18 - {s^2} - 9} \right)}}{{{{\left( {{s^2} + 9} \right)}^3}}}\)
\(= \frac{{25\left( {{s^2} - 27} \right)}}{{{{\left( {{s^2} + 9} \right)}^3}}}\)
By using the shifting property,
\(L\left\{ {{e^{ - 2t}}{t^2}\cos t} \right\} = \frac{{2\left( {s + 2} \right)\left( {{{\left( {s + 2} \right)}^2} - 27} \right)}}{{{{\left( {{{\left( {s + 2} \right)}^2} + 9} \right)}^3}}}\)
\(= \frac{{2\left( {s + 2} \right)\left( {{s^2} + 4s - 23} \right)}}{{{{\left( {{s^2} + 4s + 13} \right)}^3}}}\)