Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The maximum value of the function \(f\left( x \right) = - \frac{5}{3}{x^3} + 10{x^2} - 15x + 16\) in the interval (0.5, 3.5) is 
    Solution

    \(f\left( x \right) = - \frac{5}{3}{x^3} + 10{x^2} - 15x + 16\) 

    \(f'\left( x \right) = - \frac{5}{3}\left( {3{x^2}} \right) + 10x - 15\) 

    = -5x2 + 20x – 15

    f’(x) = 0

    -5x2 + 20x – 15 = 0

    x2 – 4x + 3 = 0

    x = 1, 3

    f"(x) = -10x + 20

    f”(1) = -10 + 20 = 10 > 0

    at x = 1, f(x) has minimum

    f”(3) = -10(3) + 20 = -10 < 0

    at x = 3, f(x) has maximum.

    \(f\left( 3 \right) = - \frac{5}{3}{\left( 3 \right)^3} + 10{\left( 3 \right)^2} - 15\left( 3 \right) + 16\) 

    = -45 + 90 – 45 + 16 = 16

  • Question 2
    1 / -0
    If \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {1 + x}&{if\;x < 0}\\ {\left( {1 - x} \right)\left( {px + q} \right)}&{if\;x \ge 0} \end{array}} \right.\) satisfies the assumptions of Rolle’s Theorem in the interval [-1, 1], the ordered pair (p, q) is
    Solution

    Rolle’s Theorem:

    Suppose f(x) is continuous on [a, b] differentiable on (a, b) and f(a) = f(b). Then there exists some point c ϵ [a, b] such that f'(c) = 0.

    Calculation:

    The given function is continuous and differentiable at x = 0

    \( \Rightarrow \begin{array}{*{20}{c}} {lt}\\ {x \to {0^ - }} \end{array}f\left( x \right) = \begin{array}{*{20}{c}} {lt}\\ {x \to {0^ + }} \end{array}f\left( x \right)\)

    \( \Rightarrow \begin{array}{*{20}{c}} {lt}\\ {x \to 0} \end{array}f\left( {1 + x} \right) = \begin{array}{*{20}{c}} {lt}\\ {x \to 0} \end{array}\left( {1 - x} \right)\left( {px + q} \right)\)

    ⇒ 1 = q

    The function to be differentiable at x = 0

    f'(x = 0) = f'(x = 0+)

    ⇒ 1 = (-1) (px + q) + (1 – x) p

    At, x = 0

    ⇒ 1 = -q + p ⇒ p = 1 + q = 2

    (p, q) = (2, 1)
  • Question 3
    1 / -0

    Find C of Cauchy’s mean value theorem for the function 1/x and 1/x2 in [4, 6]

    Solution

    Explanation:

    \(f\left( x \right) = \frac{1}{x},\;g\left( x \right) = \frac{1}{{{x^2}}}\)

    f(x) and g(x) are continuous in [4, 6]

    f(x) and g(x) are differentiable in [4, 6]

    \(g'\left( x \right) = \frac{{ - 2}}{{{x^3}}}\)

    g’(x) ≠ 0 in (4, 6)

    Now, according to Cauchy’s mean value theorem

    \(\frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( b \right) - f\left( a \right)}}{{g\left( b \right) - g\left( a \right)}}\)

    \(\begin{array}{*{20}{c}} {f'\left( x \right) = \frac{{ - 1}}{{{x^2}}}}&{f'\left( b \right) = \frac{{ - 2}}{{{x^3}}}} \end{array}\)

    \(f\left( a \right) = f\left( 4 \right) = \frac{1}{4}\;\)

    \(f\left( b \right) = f\left( 6 \right) = \frac{1}{6}\)

    \(\begin{array}{l} g\left( a \right) = g\left( 4 \right) = \frac{1}{{16}}\\ g\left( b \right) = g\left( 6 \right) = \frac{1}{{36}} \end{array}\)

    \(\begin{array}{l} \begin{array}{*{20}{c}} {f'\left( x \right) = \frac{{ - 1}}{{{c^2}}}}&{g'\left( c \right) = \frac{{ - 2}}{{{c^3}}}} \end{array}\\ \Rightarrow \frac{{\frac{{ - 1}}{{{c^2}}}}}{{\frac{{ - 2}}{{{c^3}}}}} = \frac{{\frac{1}{6} - \frac{1}{4}}}{{\frac{1}{{36}} - \frac{1}{{16}}}} = 2.4 \end{array}\)

    ∴ c = 4.8

  • Question 4
    1 / -0
    If \(x = \mathop \sum \limits_{k = 1}^\infty {a_k}\sin kx\), for -π ≤ x ≤ π, the value of a2 is ______
    Solution

    f(x) = x

    f(x) is an odd function.

    So, only bn exists in the Fourier series expansion.

    For -π ≤ x ≤ π,

    \({b_n} = \frac{2}{\pi }\mathop \smallint \limits_0^\pi x\sin \left( {\frac{{n\pi }}{\pi }x} \right)dx\) 

    \( = \frac{2}{\pi }\mathop \smallint \limits_0^\pi x\sin nx\;\;dx\) 

    \( = \frac{2}{\pi }\left[ {\left[ {\frac{x}{n}\left( { - \cos nx} \right)} \right]_0^\pi - \frac{1}{n}\mathop \smallint \limits_0^\pi - \cos nx} \right]\) 

    \( = \frac{2}{\pi }\left[ {\frac{{ - \pi \;}}{n}\cos n\pi + \frac{1}{{{n^2}}}\left[ {\sin nx} \right]_0^\pi } \right]\) 

    \( = \frac{2}{\pi }\left[ {\frac{{ - \pi }}{n}{{\left( { - 1} \right)}^n} + \frac{1}{{{n^2}}}\left( 0 \right)} \right]\) 

    \( = \frac{{ - 2}}{n}{\left( { - 1} \right)^n}\) 

    \(f\left( x \right) = x = \mathop \sum \limits_{k = 1}^\infty \frac{{ - 2}}{n}{\left( { - 1} \right)^n}\sin kx\) 

    \({a_2} = \frac{{ - 2}}{2}{\left( { - 1} \right)^2} = - 1\)  

  • Question 5
    1 / -0

    Consider the function f(x, y) = 2x2 - 2x2y + y2. Which of the following statement is true?

    1. (0, 0) is minima
    2. (1, 1) is saddle point
    3. (-1, 1) is saddle point
    Solution

    F = 2x2 - 2x2y + y2

    \(\frac{{\partial f}}{{\partial x}} = 4x - 4xy\)

    \(\frac{{\partial f}}{{\partial y}} = - 2{x^2} + 2y\)

    The critical points are

    4x - 4xy = 0

    -2x2 + 2y = 0

    x(1 – y) = 0 …..(1)

    y = x2 ……(2)

    equation (1) gives us two cases

    x = 0 and y = 1

    When x = 0, y = 0, (0, 0) is critical point

    When y = 1, x2 = 1, (1, 1) and (-1, 1) are also critical points

    (0, 0) (1, 1) and (-1, 1) are critical points

     D = det \(\left( {\begin{array}{*{20}{c}} {{f_{xx}}}&{{f_{xy}}}\\ {{f_{yy}}}&{{f_{yy}}} \end{array}} \right) = {f_{xx}}{f_{yy}} - f_{xy}^2\)

    If D > 0 and fxx > 0 critical point is minima

    If D > 0 and fxx < 0 critical point is maxima

    D < 0, Critical point is saddle point

    For (x, y) = (0, 0)

    D = 8 > 0, fxx > 0

    (0, 0) is minimum

    For (x, y) = (1, 1)

    D = -16 < 0

    (1, 1) is saddle point

    For (x, y) = (-1, 1)

    D = -16 < 0

    (-1, 1) is saddle point
  • Question 6
    1 / -0
    If \(f\left( x \right) = {x^3} - 3x - 1\) is continuous in the closed interval \(\left[ {\frac{{13}}{7}, - \frac{{11}}{7}} \right]\) and f’(x) exists in the open interval \(\left( {\frac{{13}}{7}, - \frac{{11}}{7}} \right)\) then find the value of c such that it lies in \(\left( {\frac{{13}}{7}, - \frac{{11}}{7}} \right)?\)
    Solution

    Since given function is continuous and differentiable then by Lagrange’s Mean-Value Theorem.

    \(f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\)

    \(a = - \frac{{11}}{7},\;b = \frac{{13}}{7}\)

    \(f\left( x \right) = {x^3} - 3x - 1\)

    \(f'\left( x \right) = 3{x^2} - \;3\)

    \({f^{'}}\left( c \right) = 3{c^2} - \;3\)

    \(f\left( b \right) = {\left( { - \frac{{11}}{7}} \right)^3} - 3\left( { - \frac{{11}}{7}} \right) - 1 = \; - \frac{{57}}{{343}}\)

    \(f\left( a \right) = {\left( {\frac{{13}}{7}} \right)^3} - 3\left( {\frac{{13}}{7}} \right) - 1 = \; - \frac{{57}}{{343}}\)

    \(3{c^2} - \;3 = \frac{{ - \;\frac{{57}}{{343}} - \left( { - \;\frac{{57}}{{343}}} \right)}}{{ - \frac{{11}}{7} - \frac{{13}}{7}}}\)

    \(3{c^2} - \;3 = 0\)

    \({c^2} = 1\)

    \(\therefore c\; = \pm 1\)
  • Question 7
    1 / -0
    The equation 2x − 1 − sin x = 0 has
    Solution

    Let f(x) = 2x − 1 − sin x = 0

    f(0) = 2(0) – 1 – sin 0 = -1 < 0

    f(π) = 2π – 1 – sin π = 2π – 1 – (-1) = 2π > 0

    So, by the e Intermediate Value Theorem, there exists a between 0 and π such that f(a) = 0. In other words, the given equation has at least one solution.

    Suppose that the equation has more than one solution. In particular, this will mean there exist x1 and x2 such that f(x1) = 0, f(x2) = 0 and x1 ≠ x2.

    If x1 < x2, then, by the Mean Value Theorem, there exists c between x1 and x2 such that

    \(f'\left( c \right) = \frac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = 0\)

    We know that, f’(x) = 2 – cos x

    f'(c) = 2 – cos c

    Since cos c ≤ 1, 2 − cos c ≥ 1, so we have that f'(c) = 0 and f'(c) ≥ 1. Clearly both of these cannot be true.

    So, the assumption that there is more than one solution to the equation must have been false.

    Therefore, we can conclude that there is exactly one solution to the equation.
  • Question 8
    1 / -0
    The half range Fourier cosine series of the function \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x,\;\;\;0 < x < \frac{\pi }{2}}\\{\pi - x,\;\;\;\frac{\pi }{2} < x < \pi }\end{array}} \right.\) is given by
    Solution

    Half range sine series of f(x) in the range (0, L) is

    \(f\left( x \right) = \mathop \sum \nolimits_{n = 1}^\infty {b_n}\sin \left( {\frac{{n\pi }}{L}x} \right)\) 

    Where \({b_n} = \frac{2}{L}\mathop \smallint \limits_0^L f\left( x \right)\sin \left( {\frac{{n\pi }}{L}x} \right)dx\)

    Half range cosine series of f(x) in the range (0, L) is

    \(f(x) = {a_0}/2 + ?_{(n = 1)}^???{a_n}cos?(n?/Lx)?\) 

    Where \({a_n} = \frac{2}{L}\mathop \smallint \limits_0^L f\left( x \right)\cos \left( {\frac{{n\pi }}{L}x} \right)dx\) 

    \({a_0} = \frac{2}{L}\mathop \smallint \limits_0^L f\left( x \right)dx\) 

    From the given function

    L = π

    \({a_0} = \frac{2}{\pi }\mathop \smallint \limits_0^\pi f\left( x \right)dx\) 

    \( = \frac{2}{\pi }\left[ {\mathop \smallint \limits_0^{\frac{\pi }{2}} x\;dx + \mathop \smallint \limits_{\frac{\pi }{2}}^\pi \left( {\pi - x} \right)dx} \right]\) 

    \( = \frac{2}{\pi }\left[ {\left[ {\frac{{{x^2}}}{2}} \right]_0^{\frac{\pi }{2}} + \left[ {\pi x - \frac{{{x^2}}}{2}} \right]_{\frac{\pi }{2}}^\pi } \right]\) 

    \( = \frac{2}{\pi }\left[ {\frac{{{\pi ^2}}}{8} + \frac{{{\pi ^2}}}{2} - \left( {\frac{{{\pi ^2}}}{2} - \frac{{{\pi ^2}}}{8}} \right)} \right]\) 

    \(= \frac{2}{\pi } \times \frac{{{\pi ^2}}}{4} = \frac{\pi }{2}\) 

    \({a_n} = \frac{2}{\pi }\mathop \smallint \limits_0^\pi f\left( x \right)\cos nx\;dx\) 

    \( = \frac{2}{\pi }\left[ {\mathop \smallint \limits_0^{\frac{\pi }{2}\;} x\cos nx\;\;dx + \;\mathop \smallint \limits_{\frac{\pi }{2}}^\pi \left( {\pi - x} \right)\cos nx\;\;dx} \right]\) 

    \(\smallint x\cos nx\;dx = x\smallint \cos nx\;dx - \smallint \frac{{\sin nx}}{n}dx\) 

    \( = \frac{x}{n}\sin nx + \frac{1}{{{n^2}}}\cos nx\) 

    \({a_n} = \frac{2}{\pi }\left[ {\left[ {\frac{x}{n}\sin nx + \frac{1}{{{n^2}}}\cos nx} \right]_0^{\frac{\pi }{2}} + \left[ {\frac{\pi }{n}\sin nx} \right]_{\frac{\pi }{2}}^\pi - \left[ {\frac{x}{n}\sin nx + \frac{1}{{{n^2}}}\cos nx} \right]_{\frac{\pi }{2}}^\pi } \right]\) 

    \( = \frac{2}{\pi }\left[ {\left( {\frac{\pi }{{2n}}\sin \frac{{n\pi }}{2} + \frac{1}{{{n^2}}}\cos \frac{{n\pi }}{2} - 0 - \frac{1}{{{n^2}}}\cos 0} \right) + \left( {\frac{\pi }{n}\sin n\pi - \frac{\pi }{n}\sin \frac{{n\pi }}{2}} \right) - \left( {\frac{\pi }{n}\sin n\pi + \frac{1}{{{n^2}}}\cos n\pi - \frac{\pi }{{2n}}\sin \frac{{n\pi }}{2} - \frac{1}{{{n^2}}}\cos \frac{{n\pi }}{2}} \right)} \right]\)

    \( = \frac{2}{\pi }\left[ {\frac{\pi }{{2n}}\sin \frac{{n\pi }}{n} - \frac{1}{{{n^2}}} - \frac{\pi }{n}\sin \frac{{n\pi }}{2} + \frac{1}{{{n^2}}}\cos n\pi + \frac{\pi }{{2n}}\sin \frac{{n\pi }}{2}} \right]\) 

    \( = \frac{{ - 2}}{\pi }\left[ {\frac{{1 - \cos n\pi }}{{{n^2}}}} \right]\) 

    \(f\left( x \right) = \frac{\pi }{4} + \mathop \sum \limits_{n = 1}^\infty \frac{{ - 2}}{{\pi {n^2}}}\left( {1 - \cos n\pi } \right)\cos \left( {nx} \right)\) 

    \( = \frac{\pi }{4} - \frac{4}{\pi }\left[ {\frac{1}{{{1^2}}}\cos x + \frac{1}{{{3^2}}}\cos 3x + \frac{1}{{{5^2}}}\cos 5x + \ldots } \right]\) 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now