Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 7

Result Self Studies

Engineering Mathematics Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the values of y(1) by solving the differential equation \(y\frac{{dy}}{{dx}} = 6{x^2} + 5,\;y\left( 0 \right) = 2\)
    Solution

    \(y\frac{{dy}}{{dx}} = 6{x^2} + 5\)

    y dy = (6x2 + 5) dx

    By integrating both the sides, we get

    \( \Rightarrow \frac{{{y^2}}}{2} = 2{x^3} + 5x + C\) 

    y2 = 4x3 + 10x + C

    y(0) = 2

    C = 4

    Now, y2 = 4x3 + 10x + 4

    At x = 1, y2 = 4 + 10 + 4 = 18

    \( \Rightarrow y\left( 1 \right) = \sqrt {18} = \pm 3\sqrt 2 \)

  • Question 2
    1 / -0
    If \(\frac{{{d^2}y}}{{d{t^2}}} + y = 0\) under the conditions y = 1, \(\frac{{dy}}{{dt}} = 0\), when t = 0, then y(π/2) is equal to
    Solution

    (D2 + 1) y = 0

    A.E. is (D2 + 1) = 0

    ⇒ D = ± i

    Solution is, y = (C1 cos t + C2 sin t)

    Given that, y(0) = 1

    ⇒ 1 = (C1 + 0) ⇒ C1 = 1

    y’ = -C1 sin t + C2 cos t

    y’(0) = 0

    ⇒ 0 = 0 + C2 ⇒ C2 = 0

    ⇒ y = cos t

    \(\Rightarrow y\left( {\frac{\pi }{2}} \right) = \cos \left( {\frac{\pi }{2}} \right) = 0\)

  • Question 3
    1 / -0

    The solution of the partial differential equation \(\frac{{{\partial ^2}z}}{{\partial {y^2}}} + z = 0\) is when \(y = 0,z = {e^x}\;and\frac{{\partial z}}{{\partial y}} = {e^{ - x}}\)

    Solution

    Explanation:

    \(\frac{{{\partial ^2}}}{{\partial {y^2}}} + z = 0\)

    If z were function of y alone, the solution would have been z = A sin y + B cos y, where A and B are constants.

    Since z is a function of x and y, A and B can be arbitrary functions of x.

    Hence the solution of the given equations is,

    z = f(x) sin y + ϕ(x) cos y

    \(\frac{{\partial z}}{{\partial y}} = f\left( x \right)\cos y - \phi \left( x \right)\sin y\)

    At, y = 0, z = ex

    ⇒ ex = ϕ(x)

    At, \(y = 0,\frac{{\partial z}}{{\partial y}} = {e^{ - x}}\)

    ⇒ e-x = f(x)

    The solution is,

    z = e-x sin y + ex cos y
  • Question 4
    1 / -0
    Which of the following equations represents a one-dimensional wave equation?
    Solution

    One dimensional wave equation: \(\frac{{{\partial ^2}u}}{{\partial {t^2}}} = {C^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}}\)

    Two-dimensional wave equation: \(\frac{{{\partial ^2}u}}{{\partial {t^2}}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}\)

    Important:

    Heat equation: \(\frac{{\partial u}}{{\partial t}} = {C^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}}\)

    Laplace equation: \(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}} + \frac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\)
  • Question 5
    1 / -0

    The differential equation is, y’ + y tan x = cos x, y(0) = 0.

    The value of y(π/4) is ______
    Solution

    Concept:

    The standard form of a first-order linear differential equation is,

    Form 1: \(\frac{{dy}}{{dx}} + Py = Q\)

    Where P and Q are the functions of x.

    Integrating factor, \(IF = {e^{\smallint Pdx}}\)

    Now, the solution for the above differential equation is,

    \(y\left( {IF} \right) = \smallint IF.Qdx+C\)

    Form 2: \(\frac{{dx}}{{dy}} + Px = Q\)

    Where P and Q are the functions of y.

    Integrating factor, \(IF = {e^{\smallint Pdy}}\)

    Now, the solution for the above differential equation is,

    \(x\left( {IF} \right) = \smallint IF.Qdy+C\)

    Calculation:

    y' + y tan x = cos x

    Integrating factor \( = {e^{\smallint \tan x\;dx}}\) 

    \( = {e^{ - \log \left| {\cos x} \right|}}\) 

    \( = \frac{1}{{\cos x}}\) 

    \(y\left( {\frac{1}{{\cos x}}} \right) = \smallint \frac{1}{{\cos x}} \cdot \cos x + C\) 

    \( \Rightarrow \frac{y}{{\cos x}} = x + C\) 

    y = x cos x + C cos x

    At x = 0, y = 0

    C = 0

    y = x cos x

    \(y\left( {\frac{\pi }{4}} \right) = \frac{\pi }{4}\cos \left( {\frac{\pi }{4}} \right) = 0.555\)
  • Question 6
    1 / -0
    The solution of a differential equation \(\frac{{dy}}{{dt}} - y = {e^{3t}}\) with an initial condition y(0) = 2 is Aet + Be3t. The value of A + B is ______
    Solution

    \(\frac{{dy}}{{dt}} - y = {e^{3t}}\) 

    By applying the Laplace transform,

    \(sy\left( s \right) - y\left( s \right) - y\left( 0 \right) = \frac{1}{{s - 3}}\) 

    \( \Rightarrow sy\left( s \right) - y\left( s \right) - 2 = \frac{1}{{s - 3}}\) 

    \( \Rightarrow \left( {s - 1} \right)y\left( s \right) = 2 + \frac{1}{{\left( {s - 3} \right)}}\) 

    \( \Rightarrow y\left( s \right) = \frac{2}{{s - 1}} + \frac{1}{{\left( {s - 1} \right)\left( {s - 3} \right)}}\) 

    \(= \frac{2}{{\left( {s - 1} \right)}} - \frac{1}{2}\left( {\frac{1}{{s - 1}} - \frac{1}{{s - 3}}} \right)\) 

    \( = \frac{3}{2}\frac{1}{{\left( {s - 1} \right)}} + \frac{1}{2}\frac{1}{{\left( {s - 3} \right)}}\) 

    By applying inverse Laplace transform,

    \( \Rightarrow y\left( t \right) = \frac{3}{2}{e^t} + \frac{1}{2}{e^{3t}}\) 

    = Aet + Be3t

    \(A + B = \frac{3}{2} + \frac{1}{2} = 2\)

  • Question 7
    1 / -0

    The solution of a partial differential equation is in the form of z = f1 (y - ax) + x f2 (y - bx).

    \(4\frac{{{\partial ^2}z}}{{\partial {x^2}}} + 12\frac{{{\partial ^2}z}}{{\partial x\;\partial y}} + 9\frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0\) 

    Then the values of a and b are
    Solution

    The given partial differential equation can be written as

    (4D2 + 12DD’ + 9D’2) z = 0

    Its auxiliary equation is,

    4m2 + 12m + 9 = 0

    \( \Rightarrow m = \frac{{ - 3}}{2},\frac{{ - 3}}{2}\) 

    The complete solution is,

    z = f1 (y – 1.5 x) + x f2 (y – 1.5 x)

    Therefore, \(a = \frac{3}{2},\;b = \frac{3}{2}\)
  • Question 8
    1 / -0
    Solution of the differential equation \(20{y}''+4{y}'+y=0\) with initial conditions y(0) = 3.2 and \({y}'\left( 0 \right)=0\) is
    Solution

    Concept:

    For different roots of the auxiliary equation, the solution (complementary function) of the differential equation is as shown below.

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    \({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m3, … (two real and equal roots)

    \(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m1, m4… (three real and equal roots)

    \(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    \({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    \({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

     

    Calculation:

    Given differential equation is 20D2 + 4D + 1 = 0

    \(\Rightarrow D=\frac{-4\pm \sqrt{16-80}}{40}=\frac{-4\pm 8i}{40}=-0.1\pm 0.2i\)

    Solution of the given differential equation is:

    \(y={{e}^{-0.1x}}\left( {{C}_{1}}\cos 0.2x+{{C}_{2}}\sin 0.2x \right)\)

    \({y}'\left( x \right)={{e}^{-0.1x}}\left( -0.2{{C}_{1}}\sin 0.2x+0.2{{C}_{2}}\cos 0.2x \right)-0.1{{e}^{-0.1x}}\left( {{C}_{1}}\cos 0.2x+{{C}_{2}}\sin 0.2x \right)\)

    y(0) = 3.2 ⇒ 3.2 = C1

    \({y}'\left( 0 \right)=0\Rightarrow 0=0.2{{C}_{2}}-0.1{{C}_{1}}\)

    ⇒ C1 = 2 C2

    ⇒ C1 = 3.2 and C2 = 1.6

    Now the solution becomes,

    \(y={{e}^{-0.1x}}\left( 3.2\cos 0.2x+1.6\sin 0.2x \right)\)

  • Question 9
    1 / -0
    Particular integral of \(\left( {{x^2}{D^2} - 2} \right)y = {x^2} + \frac{1}{x}\)
    Solution

    Concept:

    Euler Cauchy Homogeneous linear equation:

    \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {c_1}{x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + ... + {c_{n - 1}}x\frac{{dy}}{{dx}} + {c_n}y = f(x)\)

    Take x = et ⇒ t = log x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Calculation:

    \(\left( {{x^2}{D^2} - 2} \right)y = {x^2} + \frac{1}{x}\)

    \( \Rightarrow \left( {D\left( {D - 1} \right) - 2} \right)y = {e^{2t}} + \frac{1}{{{e^t}}}\)

    (D2 – D - 2)y = e2t + e-t

    \(PI = \frac{1}{{\left( {{D^2}D - 2} \right)}}\left( {{e^{2t}} + {e^{ - t}}} \right)\) 

    \( = \frac{1}{{\left( {{D^2} - D - 2\;} \right)}}{e^{2t}} + \frac{1}{{\left( {{D^2} - D - 2} \right)}}{e^{ - t}}\) 

    \( = \frac{t}{{2D - 1}}{e^{2t}} + \frac{t}{{2D - 1}}{e^{ - t}}\) 

    \( = \frac{t}{3}{e^{2t}} + \frac{t}{{ - 3}}{e^{ - t}}\)  

    \( = \frac{t}{3}\left( {{e^{2t}} - {e^{ - t}}} \right) = \frac{{ln\;x}}{3}\left( {{x^2} - \frac{1}{x}} \right)\) 

  • Question 10
    1 / -0
    The complementary solution of the differential equation \({x^2}\frac{{{d^3}y}}{{d{x^3}}} - 4x\frac{{{d^2}y}}{{d{x^2}}} + 6\frac{{dy}}{{dx}} = 4\) is
    Solution

    Concept:

    Euler Cauchy Homogeneous linear equation:

    \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {c_1}{x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + ... + {c_{n - 1}}x\frac{{dy}}{{dx}} + {c_n}y = f(x)\)

    Take x = et ⇒ t = log x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Calculation:

    \({x^2}\frac{{{d^3}y}}{{d{x^3}}} - 4x\frac{{{d^2}y}}{{d{x^2}}} + 6\frac{{dy}}{{dx}} = 4\)

    By multiplying with ‘x’ on both sides

    \(\Rightarrow {x^3}\frac{{{d^3}y}}{{d{x^3}}} - 4{x^2}\frac{{{d^2}y}}{{d{x^2}}} + 6x\frac{{dy}}{{dx}} = 4x\)

    The given equations become,

    ⇒ [D (D – 1) (D – 2) – 4 D (D – 1) + 6D] y = 4x

    ⇒ (D3 – 3D2 + 2D – 4D2 + 4D + 6D) y = 4x

    ⇒ (D3 – 7D2 + 12D) y = 4x

    Auxiliary equation: D3 – 7D2 + 12D = 0

    ⇒ D (D2 – 7D + 12) = 0

    ⇒ D = 0, 3, 4

    Complementary solution (CF) = C1 + C2 e3t + C3 e4t

    CF = C1 + C2 x3 + C3x4  

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now