Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 8

Result Self Studies

Engineering Mathematics Test 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the value of m for which 2x – x2 + my2 is harmonic?
    Solution

    Concept:

    If f(x, y) is harmonic then it must satisfy Laplace’s equation

    \({{\nabla }^{2}}~f\left( x,~y \right)=0=\frac{{{\partial }^{2}}f}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}f}{\partial {{y}^{2}}}\)

    Calculation:

    Given function: f = 2x – x2 + my2

    So, for harmonic it should satisfy Laplace’s equation

    \({{\nabla }^{2}}f=0=\frac{{{\partial }^{2}}f}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}f}{\partial {{y}^{2}}}\)

    \(\frac{{{\partial }^{2}}f}{\partial {{x}^{2}}}=\frac{\partial \left( \frac{\partial f}{\partial x} \right)}{\partial x}=\frac{\partial }{\partial x}~\left( 2-2x \right)=-2\)

    \(\frac{{{\partial }^{2}}f}{\partial {{y}^{2}}}=\frac{\partial \left( \frac{\partial f}{\partial y} \right)}{\partial y}=\frac{\partial \left( 2my \right)}{\partial y}=2m\)

    \(\Rightarrow \frac{{{\partial }^{2}}f}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}f}{\partial {{y}^{2}}}=-2+2m=0\)

    ⇒ m = 1
  • Question 2
    1 / -0
    Which one of the following functions is analytic over the entire complex plane?
    Solution

    (i) ln z

    At, z = 0

    The function is not analyse

    (ii) e1/z

    Using the expansion formula for ex

    \({e^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \ldots \)

    \({e^{1/z}} = 1 + \left( {\frac{1}{z}} \right) + \frac{1}{{2!}}\left( {\frac{1}{{{z^2}}}} \right) + \frac{1}{{3!}}\left( {\frac{1}{{{z^3}}}} \right) + \ldots \)

    At, z = 0, e1/z is not analytic

    (iii) \(\frac{1}{{1 - z}}\)

    At, z = 1, the function is not analytic

    (iv) cos z

    expansion of cos z is:

    \(\cos z = 1 - \frac{{{z^2}}}{{2!}} + \frac{{{z^4}}}{{4!}} - \frac{{{z^6}\;}}{{6!}} + \ldots \)

    The function cos z is analytic over the entire entire z.
  • Question 3
    1 / -0
    The value of integral \(\mathop \smallint \nolimits_C \frac{{\cos \pi {z^2}}}{{\left( {z - 1} \right)\left( {z - 2} \right)}}dz\) where C : |z| = 3 (Positively oriented) is equal to
    Solution

    Concept:

    Cauchy’s Theorem:

    If f(z) is an analytic function and f’(z) is continuous at each point within and on a closed curve C, then

    \(\mathop \oint \limits_C f\left( z \right)dz = 0\)

    Cauchy’s Integral Formula:

    If f(z) is an analytic function within a closed curve and if a is any point within C, then

    \(f\left( a \right) = \frac{1}{{2\pi i}}\mathop \oint \limits_C \frac{{f\left( z \right)}}{{z - a}}dz\)

    \({f^n}\left( a \right) = \frac{{n!}}{{2\pi i}}\mathop \oint \limits_C \frac{{f\left( z \right)}}{{{{\left( {z - a} \right)}^{n + 1}}}}dz\)

    Residue Theorem:

    If f(z) is analytic in a closed curve C except at a finite number of singular points within C, then

    \(\mathop \smallint \limits_C f\left( z \right)dz = 2\pi i \times \left[ {{\rm{sum\;of\;residues\;at\;the\;singualr\;points\;within\;C}}} \right]\)

    Formula to find residue:

    1. If f(z) has a simple pole at z = a, then

    \(Res\;f\left( a \right) = \mathop {\lim }\limits_{z \to a} \left[ {\left( {z - a} \right)f\left( z \right)} \right]\)

    2. If f(z) has a pole of order n at z = a, then

    \(Res\;f\left( a \right) = \frac{1}{{\left( {n - 1} \right)!}}{\left\{ {\frac{{{d^{n - 1}}}}{{d{z^{n - 1}}}}\left[ {{{\left( {z - a} \right)}^n}f\left( z \right)} \right]} \right\}_{z = a}}\)

    Application:

    \(\mathop \smallint \nolimits_C \frac{{\cos \pi {z^2}}}{{\left( {z - 1} \right)\left( {z - 2} \right)}}dz\)

    Simple poles: z = 1, 2

    Both the poles lie within the given region.

    Residue at z = 1,

    \(\mathop {\lim }\limits_{z \to 1} \frac{{\cos \pi {z^2}}}{{\left( {z - 1} \right)\left( {z - 2} \right)}} \cdot \left( {z - 1} \right) = \frac{{\cos \pi }}{{\left( { - 1} \right)}} = 1\)

    Residue at z = 2

    \(\mathop {\lim }\limits_{z \to 2} \frac{{\cos \pi {z^2}}}{{\left( {z - 1} \right)\left( {z - 2} \right)}}\left( {z - 1} \right) = \cos 4\pi = 1\)

    Value of integral = 2πi [1 + 1] = 4πi

  • Question 4
    1 / -0

    Evaluate the contour integral \(\mathop \smallint \nolimits_C f\left( z \right)dz\) using the parametric representations for C, where

    \(f\left( z \right) = \frac{{{z^2} - 1}}{z}\) and the curve C is the semicircle z = 2e (0 ≤ θ ≤ π)
    Solution

    \(\mathop \smallint \nolimits_C f\left( z \right)dz\)

    \( = \mathop \smallint \limits_0^\pi \frac{{\left( {{z^2} - 1} \right)}}{z}dz\)

    \( = \mathop \smallint \limits_0^\pi \frac{{4{e^{2i\theta }} - 1}}{{2{e^{i\theta }}}}d\left( {2{e^{i\theta }}} \right)\)

    \( = \left[ {2{e^{2i\theta }} - i} \right]_0^\pi \)

    = -πi

  • Question 5
    1 / -0
    The conjugate harmonic function v(x, y) of u(x, y) = In (x2 + y2) is
    Solution

    Concept:

    Let the real part u(x, y) of an analytic function f(z) = u + iv be given

    To find the function v(x, y),

    The total derivative of V is given by

    \(dv = \frac{{\partial v}}{{\partial x}}dx + \frac{{\partial v}}{{\partial y}}dy\) 

    By using CR equations, ux = vx and uy = -vx

    \(dv = \frac{{ - \partial u}}{{\partial y}}dx + \frac{{\partial u}}{{\partial x}}dy\) 

    The R.H.S of the above equation is in the form of Mdx + Ndy where

    \(M = \frac{{ - \partial u}}{{\partial y}}\)  and \(N = \frac{{\partial u}}{{\partial x}}\) 

    Since u is harmonic, it satisfies Laplace equation

    \(\frac{{\partial M}}{{\partial y}} = \frac{{ - {\partial ^2}u}}{{\partial {y^2}}}\) and \(\frac{{\partial N}}{{\partial x}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}}\) 

    \(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}} = 0\) 

    \( \Rightarrow \frac{{\partial M}}{{\partial y}} = \frac{{\partial N}}{{\partial x}}\) 

    Hence the equation is on the exact equation.

    Now, by integrating we get

    \(v = \smallint - {u_y}dx\; + \smallint {u_x}\;dy + C\) 

    Similarly when v(x, y) is given, then to find u(x, y)

    \(u = \smallint {v_y}\;dx - \smallint {v_x}dy + C\) 

    Calculation:

    Given that, (x, y) = In (x2 + y2)

    \({u_x} = \frac{{2x}}{{\left( {{x^2} + {y^2}} \right)}},\;\;{u_y} = \frac{{2y}}{{\left( {{x^2} + {y^2}} \right)}}\) 

    From CR equation,

    \({u_x} = {u_y} = \frac{{2x}}{{\left( {{x^2} + {y^2}} \right)}}\) 

    By integrating on both the sides,

    \(v = \smallint \frac{{2x}}{{{x^2} + {y^2}}}dy\) 

    \( \Rightarrow v = 2{\tan ^{ - 1}}\left( {\frac{y}{x}} \right) + g\left( x \right)\) 

    By differentiating w.r.t. ‘x’

    \( \Rightarrow {v_x} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\) 

    \( \Rightarrow \; - {u_y} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\) 

    \( \Rightarrow \frac{{ - 2y}}{{{x^2} + {y^2}}} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\) 

    g’(x) = 0

    g(x) = C

    \(v\left( {x,\;y} \right) = 2{\tan ^{ - 1}}\left( {\frac{y}{x}} \right) + C\;\)
  • Question 6
    1 / -0
    The only function among the following that is analytic, is
    Solution

    i) f(z) = Re(z) = Re(x + iy) = x

    here u = x, v = 0

    ux = 1, vy = 0

    f(z) is not satisfying CR equations Hence f(z) is not analytic.

    ii) f(z) = z̅ = x - fy

    u = x, v = -y

    ux = 1, vy = -1

    ux ≠ vy

    f(x) is not satisfying CR equations.

    Hence f(z) is not analytic

    iii) f(z) = Im (z) = Im (x + iy) = y

    u = 0, v = y

    ux = 0, vy = 1

    f(x) is not satisfying CR equations.

    Hence f(z) is not analytic

    iv) f(z) = sin z = (x + iy)

    = sin x cos iy + cos x sin iy

    = sin x cos hy + i cos x sin hy

    u = sin x cos hy, v = cos x sin hy

    ux = cos x cos hy

    vy = cos x cos hy

    uy = sin x sin hy

    vx = - sin x sin hy

    ux = vy and uy = - vx

    f(z) is satisfying CR equation.

    Hence f(z) is analytic.
  • Question 7
    1 / -0
    While expanding the function \(f\left( z \right) = \frac{{z - 1}}{{z + 1}}\) using Taylor’s series about the point z = 1, what is the coefficient of (z - 1)3 term is
    Solution

    \(f\left( z \right) = \frac{{z - 1}}{{z + 1}}\)

    The given point is z = 1 ⇒ (z - 1) = 0

    Let z – 1 = t ⇒ z = t + 1

    \(f\left( z \right) = \frac{t}{{\left( {t + 2} \right)}} = \frac{t}{{2\left( {1 + \frac{t}{2}} \right)}}\)

    \( = \frac{t}{2}{\left( {1 + \frac{t}{2}} \right)^{ - 1}}\)

    \( = \frac{t}{2}\left( {1 - \frac{t}{2} + {{\left( {\frac{t}{2}} \right)}^2} - {{\left( {\frac{t}{2}} \right)}^3} + \ldots } \right)\)

    \( = \frac{t}{2}\left( {1 - \frac{t}{2} + \frac{{{t^2}}}{4} - \frac{{{t^3}}}{8} + \ldots } \right)\)

    \( = \frac{t}{2} - \frac{{{t^2}}}{4} + \frac{{{t^3}}}{8} - \frac{{{t^4}}}{{16}} + \ldots \)

    \( = \frac{{\left( {z - 1} \right)}}{2} - \frac{{{{\left( {z - 1} \right)}^2}}}{4} + \frac{{{{\left( {z - 1} \right)}^3}}}{8} \ldots \)

    Co-efficient of (z - 1)3 term is \(\frac{1}{8}\)

  • Question 8
    1 / -0
    Find the analytic function z = u + iv, if \(2u + v = {e^x}\left( {\cos y-\sin y} \right)\)
    Solution

    z = u + iv

    \(2u + v = {e^x}\left( {\cos y-\sin y} \right)\)

    \(2{u_x} + {v_x} = {e^x}\left( {\cos y - \sin y} \right)\)      ---- (1)  

    \(2{u_y} + {v_y} = {e^x}\left( { - \sin y - \cos y} \right)\)      ----(2)

    C.R. equations are

    \({u_x} = {v_y},{u_y} = - {v_x}\)

    Equation 1 becomes,

    \(2{u_x} - {u_y} = {e^x}\left( {\cos y-\sin y} \right)\)      ----(3)

    Equation (2) becomes

    \(2{u_y} + {u_x} = {e^x}\;\left( { - \sin y - \cos y} \right)\)      ----(4)

    From equations (3) and (4)

    By doing operation 2 × (3) + (4)

    \( \Rightarrow 4{u_x}-2{u_y} + 2{u_y} + {u_x} = {e^x}\left( {2\cos y-2\sin y-\sin y-\cos y} \right)\)

    \( \Rightarrow {u_x} = \frac{1}{5}{e^x}\left( {\cos y - 3\sin y} \right)\)

    From equation (3)

    \( \Rightarrow {u_y} = \left[ {\frac{2}{5}{e^x}\left( {\cos y - 3\sin y} \right)} \right] - {e^x}\left( {\cos y - \sin y} \right)\)

    \(f'\left( z \right) = {u_x} - i{u_y}\)

    \( \Rightarrow f'\left( z \right) = \frac{1}{5}{e^x}\left( {\cos y - 3\sin y} \right) - i\left[ {\frac{2}{5}{e^x}\left( {\cos y - 3\sin y} \right) - {e^x}\left( {\cos y - \sin y} \right)} \right]\)

    By Milne- Thomson’s method we express f(z) in terms of z on replacing x by z and y by 0.

    \( \Rightarrow f'\left( z \right) = \frac{1}{5}{e^z}\left( 1 \right) - i\left[ {\frac{2}{5}{e^z}\left( 1 \right) - {e^z}\left( 1 \right)} \right]\)

    \( \Rightarrow f'\left( z \right) = \frac{1}{5}{e^z} + i\frac{3}{5}{e^z} = \frac{{{e^z}}}{5}\left( {1 + 3i} \right)\)

    By integrating w.r.t. z on both sides

    \( \Rightarrow \smallint f'\left( z \right)dz = \smallint \frac{{{e^z}}}{5}\left( {1 + 3i} \right)dz\)

    \( \Rightarrow f\left( z \right) = \frac{{{e^z}}}{5}\left( {1 + 3i} \right)\)
  • Question 9
    1 / -0
    The Laurent series expansion of the function \(f\left( z \right) = \frac{1}{{{e^z} - 1}}\) valid in the region 0 < |z| < 2, is given by
    Solution

    \({e^z} - 1 = \mathop \sum \limits_{n = 0}^\infty \frac{{{z^n}}}{{n!}} - 1\) 

    \( = \mathop \sum \limits_{n = 1}^\infty \frac{{{z^n}}}{{n!}}\) 

    \( = z\;\mathop \sum \limits_{n = 0}^\infty \frac{{{z^n}}}{{\left( {n + 1} \right)!}}\) 

    ex – 1 has a zero at ‘0’ of multiplicity one and hence f(z) has pole at 0 of order 1. So, the Laurent series f(z) is given by

    \(f\left( z \right) = \mathop \sum \limits_{n = - 1}^\infty {a_n}{z^n}\)

    \( = \frac{{a - 1}}{z} + {a_0} + {a_1}z + {a_2}{z^2} + {a_3}{z^3} + \ldots \) 

    Since (ez – 1) f(z) = 1

    \( \Rightarrow \left( {\frac{{a - 1}}{z} + {a_0} + {a_1}z + {a_2}{z^2} + {a_3}{z^3}} \right)z\left( {1 + \frac{z}{2} + \frac{{{z^2}}}{6} + \frac{{{z^3}}}{4} + \frac{{{z^4}}}{{120}} + \ldots } \right) = 1\) 

    \( \Rightarrow \left( {{a_{ - 1}} + {a_0}z + {a_1}{z^2} + {a_2}{z^3} + {a_3}{z^4} + \ldots } \right)\left( {1 + \frac{z}{2} + \frac{{{z^2}}}{6} + \frac{{{z^3}}}{{24}} + \frac{{{z^4}}}{{120}} + \ldots } \right) = 1\) 

    By comparing both the sides,

    a-1 = 1

    \({a_0} + \frac{{{a_{ - 1}}}}{2} = 0 \Rightarrow {a_0} = \frac{{ - 1}}{2}\) 

    Similarly, \({a_1} = \frac{1}{{12}},\;{a_2} = 0,\;{a_3} = \frac{{ - 1}}{{720}}\) 

    \(f\left( z \right) = \frac{1}{z} - \frac{1}{2} + \frac{z}{{12}} - \frac{{{z^3}}}{{720}} + \ldots \)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now