Concept:
The reflection coefficient for a wave propagating from medium 1 to medium 2 is defined as:
\({\rm{Γ }} = \frac{{{\eta _2} - {\eta _1}}}{{{\eta _2} + {\eta _1}}}\) ---(1)
Where η1 and η2 are the intrinsic impedance of the two mediums respectively.
For a given Electric field Ei incident at the interface, the reflected wave is given by:
\({E_r} = {\rm{Γ }}{E_i}\)
Analysis:
Since 20% of the energy in the incident wave is reflected at the boundary, we can write:
\((\frac{E_r}{E_i})^2 = Γ^2 =0.2\)
\(\left| {\rm{Γ }} \right| = \sqrt {0.2} = \pm 0.447\), i.e. for both Γ = +0.447 and Γ = - 0.447, the reflected power will be 20% of the incident power.
Using equation (1), we can write:
\(\frac{{{\eta _2} - {\eta _1}}}{{{\eta _2} + {\eta _1}}} = \pm 0.447\)
\(\frac{{{\eta _0}\sqrt {\frac{{{\mu _{r2}}}}{{{\varepsilon _{r2}}}}} - {\eta _0}\sqrt {\frac{{{\mu _{r1}}}}{{{\varepsilon _{r1}}}}} }}{{{\eta _0}\sqrt {\frac{{{\mu _{r2}}}}{{{\varepsilon _{r2}}}}} + {\eta _0}\sqrt {\frac{{{\mu _{r1}}}}{{{\varepsilon _{r1}}}}} }} = \pm 0.447\)
With εr1 = μ3r1, and εr2 = μ3r2, the above expression becomes:
\(\frac{{\sqrt {\frac{{{\mu _{r2}}}}{{\mu _{r2}^3}}} - \sqrt {\frac{{{\mu _{r1}}}}{{\mu _{r1}^3}}} }}{{\sqrt {\frac{{{\mu _{r2}}}}{{\mu _{r2}^3}}} + \sqrt {\frac{{{\mu _{r1}}}}{{\mu _{r1}^3}}} }} = \pm 0.447\)
\(\frac{{{\mu _{r1}} - {\mu _{r2}}}}{{{\mu _{r1}} + {\mu _{r2}}}} = \pm 0.447\)
\(\frac{{{\mu _{r1}}}}{{{\mu _{r2}}}} = \frac{{1 \pm 0.447}}{{1 \mp 0.447}}\)
\(\frac{{{\mu _{r1}}}}{{{\mu _{r2}}}} = 2.62\;or\;0.38\)
So, \(\frac{{{\varepsilon _{r2}}}}{{{\varepsilon _{r1}}}} = {\left( {\frac{{{\mu _{r2}}}}{{{\mu _{r1}}}}} \right)^3}\)
\(\frac{{{\varepsilon _{r2}}}}{{{\varepsilon _{r1}}}} = 0.054\;or\;17.9\)