Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    The value of t so that \(\left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right]\) is an eigen vector of \(\left[ {\begin{array}{*{20}{c}} 3&4\\ 2&t \end{array}} \right]\) is ______
    Solution

    Concept:

    Eigen vector (X) that corresponding to Eigen value (λ) satisfies the equation AX = λX.

    Calculation:

    \(A = \left[ {\begin{array}{*{20}{c}} 3&4\\ 2&t \end{array}} \right]\)

    \(X = \left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right]\)

    Let λ is an Eigen value,

    AX = λX

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 3&4\\ 2&t \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right] = \lambda \left[ {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right]\)

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 8\\ {8 - t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {4\lambda }\\ { - \lambda } \end{array}} \right]\)

    By comparing both the sides,

    8 = 4λ ⇒ λ = 2

    8 – t = -λ ⇒ 8 – t = -2 ⇒ t = 10 

  • Question 2
    2 / -0.33

    \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 1&4&2\\ 2&6&5 \end{array}} \right]\)

    For the above-given matrix, which of the following statement is/are correct.

    Solution

    \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 1&4&2\\ 2&6&5 \end{array}} \right]\)

    Performing row transformation: R3 → R3 – R1, we get:

    \(A \approx \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 1&4&2\\ 1&4&2 \end{array}} \right]\)

    Now, performing row transformation: R3 → R3 – R2, we get:

    \(A \approx \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 1&4&2\\ 0&0&0 \end{array}} \right]\)

    ∴ The determinant of the matrix is 0, i.e.

    |A| = 0

    Also, since:

    \(\left| {\begin{array}{*{20}{c}} 1&2\\ 1&4 \end{array}} \right| \ne 0\)

    Rank (A) = 2

  • Question 3
    2 / -0.33

    The value of the contour integral in the complex plane

    \(\oint \frac{{{z^3} - 2z + 3}}{{z - 2}}dz\)

    along the contour |z| = 3, taken counterclockwise is
    Solution

    Concept:

    For a given complex function with poles, the complex integral \(I = \mathop \oint \limits_C f\left( z \right)dz\) is given by

    Residue theorem as;

    \(I = \mathop \oint \limits_C f\left( z \right)dz = 2\pi \;i \times \left\{ {Sum\;of\;residue\;of\;poles\;inside\;or\;on\;C} \right\}\)

    Calculation:

    \(f\left( z \right) = \oint \frac{{{z^3} - 2z + 3}}{{z - 2}}dz\)

    Contour: |z|= 3

    Simple pole, z = 2 and it is lies inside the contour.

    Residue of f(z) at z = 2 is,

    \(\mathop {{\rm{lt}}}\limits_{z \to 2} \left( {z - 2} \right)\frac{{\left( {{z^3} - 2z + 3} \right)}}{{\left( {z - 2} \right)}} = {2^3} - 2\left( 2 \right) + 3 = 7\)

    f(z) = 2πi(7) = 14πi

  • Question 4
    2 / -0.33

    An ordinary six-faced die is thrown four times. Which of the given results is/are correct?

    (Ace represents the face side 1)

    Solution

    \(P\left( {an\;Ace} \right) = p = \frac{1}{6}\)

    The probability of not getting an ace will be:

    \(q = 1 - p = \frac{5}{6}n = 4\)

    The probability of getting 0 aces will be:

    \(P\left( {0\;Ace} \right) = {\left( {\frac{5}{6}} \right)^4}\)

    \(P\left( {1\;Ace} \right) = {\;^4}{C_1}\;{\left( {\frac{5}{6}} \right)^3} \cdot \left( {\frac{1}{6}} \right)\)

    \(P\left( {2\;Ace} \right) = \;{\;^4}{C_2}{\left( {\frac{5}{6}} \right)^2} \cdot {\left( {\frac{1}{6}} \right)^2}\)

    \(P\left( {3\;Ace} \right) = \;{\;^4}{C_3}\left( {\frac{5}{6}} \right) \cdot {\left( {\frac{1}{6}} \right)^3}\)

    \(P\left( {4\;Ace} \right) = \;{\;^4}{C_4}{\left( {\frac{5}{6}} \right)^0} \cdot {\left( {\frac{1}{6}} \right)^4}\)

    \(P\left( {4\;Ace} \right) = {\left( {\frac{1}{6}} \right)^4}\)

  • Question 5
    2 / -0.33
    Equation (α xy3 + y cos x) dx + (x2y2 + β sin x) dy = 0 is exact if
    Solution

    Concept:

    M dx + N dy = 0, will be exact differential equation if:

    \(\frac{{\partial {\rm{M}}}}{{\partial {\rm{y}}}} = \frac{{\partial {\rm{N}}}}{{\partial {\rm{x}}}}\)

    Where M and N are functions of x and y.

    Calculation:

    M = α xy3 + y cos x

    N = x2y2 + β sin x

    \(\frac{{\partial M}}{{\partial y}} = 3\;\alpha \;x{y^2} + \cos x\)

    \(\frac{{\partial N}}{{\partial x}} = 2x{y^2} + \beta \cos x\)

    The differential equation to be exact,

    3 α xy2 + cos x = 2xy2 + β cos x

    \( \Rightarrow 3\alpha = 2 \Rightarrow \alpha = \frac{2}{3}\)

    And β = 1
  • Question 6
    2 / -0.33
    The temperature in an auditorium is given by T = x2 + y2 – 2z2. A mosquito located at (2, 2, 1) in the auditorium desires to fly in such a direction that it will get warm as soon as possible. The direction, in which it must fly is
    Solution

    Concept:

    Gradient / Normal vector of surface / Slope of surface / Rate of maximum increase or decrease:

    Let ϕ(x, y, z) = C represents any scalar point function, then its gradient is defined as

    \(grad\;\phi = \nabla \phi = \hat i\frac{{\partial \phi }}{{\partial x}} + \hat j\frac{{\partial \phi }}{{\partial y}} + \hat k\frac{{\partial \phi }}{{\partial z}}\)

    Calculation:

    We have T = x2 + y2 – 2z2

    \(\nabla T = \frac{{\partial T}}{{\partial x}}i + \frac{{\partial T}}{{\partial y}}j + \frac{{\partial T}}{{\partial z}}k\)

    = 2xi + 2yj + 4zkj

    ∴ ∇T is the direction of the maximum rate of change and the mosquito should also fly in the direction of the gradient vector to get away from heat as soon as possible.

    At P(2, 2, 1) will be:

    ∇T = 4i + 4j – 4k

  • Question 7
    2 / -0.33
    The value(s) of the integral \(\mathop \smallint \limits_{ - \pi }^\pi \left| x \right|\cos nxdx,\;n \ge 1\) is (are)
    Solution

    \(\mathop \smallint \limits_{ - \pi }^\pi \left| x \right|\cos nxdx\)

    The given function f(x) = |x| cos nx is even function. So, the given integral can be reduced to

    \( = 2\mathop \smallint \limits_0^\pi \left| x \right|\cos nxdx\)

    \( = 2\mathop \smallint \limits_0^\pi x\cos nxdx\)

    \(\smallint x\cos nxdx = x\smallint \cos nxdx - \smallint \frac{{\sin nx}}{n}dx\)

    \( = x\left( {\frac{{\sin nx}}{n}} \right) + \frac{1}{{{n^2}}}\left( {\cos nx} \right)\)

    \( = 2\left[ {\frac{{x\sin nx}}{n} + \frac{{\cos nx}}{{{n^2}}}} \right]_0^\pi \)

    \( = 2\left[ {\frac{{\cos n\pi - 1}}{{{n^2}}}} \right]\)

    \( = \frac{{ - 2}}{{{n^2}}}\left( {1 - {{\left( { - 1} \right)}^n}} \right)\)

    = 0 when n is even

    \( = - \frac{4}{{{n^2}}}\) when n is odd

  • Question 8
    2 / -0.33
    Consider a matrix A = uvT where  \(u=(^1_2) ,\ v=(^1_1)\).Note that vT denotes the transpose of v. The largest eigenvalue of A is ________.
    Solution

    Concept:

    For eigen values of a matrix A,

    I A - λI I = 0

    Analysis:

    Given :

    \(U = {\left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right]_{2 \times 1}}\;\)

    \(V = {\left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right]_{2 \times 1}}\)

    \({V^T} = {\left[ {\begin{array}{*{20}{c}} 1&1 \end{array}} \right]_{1 \times 2}}\)

    \(A = U{V^T}\)

    \( = {\left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right]_{2 \times 1}}{\left[ {\begin{array}{*{20}{c}} 1&1 \end{array}} \right]_{1 \times 2}}\)

    \( = {\left[ {\begin{array}{*{20}{c}} 1&1\\ 2&2 \end{array}} \right]_{2 \times 2}}\)

    For eigen values of matrix A

    I A - λI I = 0

    \(\left| {\begin{array}{*{20}{c}} {1 - λ }&1\\ 2&{2 - λ } \end{array}} \right|\) = 0

    (1 - λ) (2 - λ) - 2 = 0

    λ2 - 3λ + 2 - 2 = 0

    λ2 - 3 λ = 0

    λ (λ - 3) = 0

    λ = 0 and 3

    So, the largest eigen value is 3.

  • Question 9
    2 / -0.33
    If the function defined by f(x) = 2x2 + 3x – m log x is monotonic decreasing function on the open interval (0, 1), then the maximum possible value of the parameter m is
    Solution

    We have f(x) = 2x2 + 3x – m log x

    Differntiating it w.r.t. x, we get:

    \(f'\left( x \right) = 4x + 3 - \frac{m}{x}\) 

    \(= \frac{{4{x^2} + 3x - m}}{x}\) 

    The function f(x) is monotonic decreasing if f’(x) < 0, i.e.

    \(\frac{{4{x^2} + 3x - m}}{x} < 0\) 

    m > 4x2 + 3x

    For the open interval (0, 1), the maximum value of m will be obtained for x = 1.

    Thus the maximum possible value of the parameter m is 7.
  • Question 10
    2 / -0.33
    If u = x log xy where \({x^3} + {y^3} + 3xy = 1,\) find du/dx
    Solution

    F(x, y) = x3 + y3 + 3xy – 1

    \( \frac{{dy}}{{dx}} = \frac{{\frac{{ - \partial f}}{{\partial x}}}}{{\frac{{\partial f}}{{\partial y}}}} \)

    \(= \frac{{ - 3{x^2} + 3y}}{{3{y^2} + 3x}} = - \frac{{{x^2} + y}}{{{y^2} + x}}\)

    \(\\ \frac{{du}}{{dx}} = \frac{{\partial u}}{{\partial x}} + \frac{{\partial u}}{{\partial y}}.\frac{{dy}}{{dx}} \)

    \(= \left( {1.\log xy + x.\frac{1}{x}} \right) + \left( {\frac{x}{y}} \right).\frac{{dy}}{{dx}}\)

    \(\Rightarrow \frac{{du}}{{dx}} = 1 + \log xy - \frac{x}{y}\frac{{\left( {{x^2} + y} \right)}}{{\left( {{y^2} + x} \right)}}\)

  • Question 11
    2 / -0.33
    Which of the following vector identities is / are always true?
    Solution

    ( × f) = 0

    The divergence of the curl is zero.

    × (∇f) = 0

    Curl of a gradient is the zero vector.

    \(\nabla \times \left( {\nabla \times \vec f} \right) = \nabla \left( {\nabla \cdot \vec f} \right) - {\nabla ^2}\vec f\) 

    \(\nabla \times (\log r\;\vec r) = (\nabla \log r) \times \vec r + \log r\left( {\nabla \times \vec r} \right)\;\)

    \(= \frac{1}{r}\bar r \times \bar r + 0 = 0\) 

  • Question 12
    2 / -0.33
    If y = f(x) satisfies the boundary value problem y’’ + 9y = 0, y (0) = 0, y(π/2) = √2, then y(π/4) is ______  
    Solution

    y’’ + 9y = 0

    y’’ + 9y = 0

    Differential Eq. is of 2nd order and Homogeneous.

    Differential Eq. → D2 + 9 = 0

    Auxiliary Eq. →

    ∴ m2 + 9 = 0 ⇒ m2 = -9 = 9 i2

    m = ± 3i

    On comparing α ± iβ on root of above eqn.

    i.e. Root of above eq. is imaginary α = 0, β = 3

    So, Solution above eq.

    y = C.F = eαx [C1 cos βx + C2 sin βx]

    y = C1 cos 3x + C2 sin 3x

    From given boundary condition: y (0) = 0

    At x = 0, y = 0

    ⇒ C1 = 0

    y(π/2) = √2

    \(\sqrt 2 = {C_1}\cos 3\left( {\frac{\pi }{2}} \right) + {C_2}\sin \frac{{3\pi }}{2} = {C_2}\sin \frac{{3\pi }}{2} = - {C_2}\)

    C2 = -√2

    y = -√2 sin 3x

    y(π/4) = ?

    \(y = - \sqrt 2 \sin \frac{{3\pi }}{4} = - \sqrt 2 \times \frac{1}{{\sqrt 2 }} = - 1\)

    \(y\left( {\frac{\pi }{4}} \right) = - 1\)
  • Question 13
    2 / -0.33
    In the Laurent expansion of \(f\left( z \right) = \frac{1}{{\left( {z - 1} \right)\left( {z - 2} \right)}}\) valid in the region 1 < |z| < 2, the co-efficient of \(\frac{1}{{{z^2}}}\) is
    Solution

    Concept:

    Laurent series of f(z) is given by:

    \(f\left( z \right) = \mathop \sum \limits_{n = - 1}^\infty {a_n}{z^n}\)

    \( = a^{- 1}z^{-1} + {a_0} + {a_1}z + {a_2}{z^2} + {a_3}{z^3} + \ldots \)

    Calculation:

    Given:

    \(f\left( z \right) = \frac{1}{{\left( {z - 1} \right)\left( {z - 2} \right)}} = \frac{1}{{z - 2}} - \frac{1}{{z - 1}}\)

    The given region is 1 < |z| < 2

    \(1 < \left| z \right| \Rightarrow \frac{1}{{\left| z \right|}} < 1\)

    \(\left| z \right| < 2 \Rightarrow \frac{{\left| z \right|}}{2} < 1\;\)

    \( \Rightarrow f\left( z \right) = \frac{1}{{2\left( {\frac{z}{2} - 1} \right)}} - \frac{1}{{z\left( {1 - \frac{1}{z}} \right)}}\)

    \( = \frac{{ - 1}}{{2\left( {1 - \frac{z}{2}} \right)}} - \frac{1}{{z\left( {1 - \frac{1}{z}} \right)}}\)

    \( = \frac{{ - 1}}{2}{\left( {1 - \frac{z}{2}} \right)^{ - 1}} - \frac{1}{z}{\left( {1 - \frac{1}{z}} \right)^{ - 1}}\)

    \( = \frac{{ - 1}}{2}\left[ {1 + \frac{z}{2} + {{\left( {\frac{z}{2}} \right)}^2} + \ldots } \right] - \frac{1}{z}\left[ {1 + \frac{1}{z} + {{\left( {\frac{1}{z}} \right)}^2} + \ldots } \right]\)

    \( = \left[ {\frac{{ - 1}}{2} - \frac{z}{4} - \frac{{{z^2}}}{8} + \ldots } \right] - \left[ {\frac{1}{z} + \frac{1}{{{z^2}}} + \frac{1}{{{z^3}}} + \ldots } \right]\)

    Co-efficient of \(\frac{1}{{{z^2}}}\;\)is -1

  • Question 14
    2 / -0.33

    Given a vector  \(\vec u = \frac{1}{3}\left( { - {y^3}̂ i + {x^3}̂ j + {z^3}̂ k} \right)\)and n̂ as the unit normal vector to the surface of the hemisphere (x2 + y2 + z2 = 1; z ≥ 0), the value of integral \(\smallint \left( {\;\nabla \times u} \right) \bullet \hat n\;dS\) evaluated on the curved surface of the hemisphere S is

    Solution

    Given vector  \(\vec v = \frac{1}{3}\left( { - {y^3}\hat i + {x^3}\hat j + {z^3}\hat k} \right)\)

    Bounded by open surface of hemisphere x2 + y2 + z2 = 1

    Such that z ≥ 0, and closed curve (x2 + y2 = 1)

    We have to find

    \(I = \smallint \left( {\nabla \times u} \right).\hat nds\)

    ⇒ from stokes theorem, we have

    \(\mathop \int\!\!\!\int \nolimits_s \left( {\nabla \times u} \right).\hat nds = \mathop \oint \nolimits_c u.dr\)

    \( \Rightarrow I = \frac{1}{3}\left\{ { - \oint {y^3}dx + \oint {x^3}dy} \right\}\)

    Now, changing the integral with substitution

    x = cos θ ⇒ dx = -sin θ dθ

    y = sin θ ⇒ dy = cos θ dθ

    \(I = \frac{1}{3}\mathop \smallint \nolimits_0^{2\pi } {\sin ^4}\theta d\theta + \mathop \smallint \nolimits_0^{2\pi } \frac{1}{3}{\cos ^4}\theta d\theta \)

    \(I = \frac{4}{3}\left( {\frac{3}{4} \times \frac{1}{2} \times \frac{\pi }{2} + \frac{3}{4} \times \frac{1}{2} \times \frac{\pi }{2}} \right) = \frac{\pi }{2}\)
  • Question 15
    2 / -0.33

    Let \(A = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1}\\ { - 1}&2&0\\ 0&0&{ - 2} \end{array}} \right]\) and B = A3 – A2 – 4A + 5I, where I is the 3 × 3 identity matrix. The determinant of B is _______ (up to 1 decimal place).

    Solution

    \(A = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1}\\ { - 1}&2&0\\ 0&0&{ - 2} \end{array}} \right]\)

    B = A3 – A2 - 4A + 5I

    |A - λI| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}} {1 - \lambda }&0&{ - 1}\\ { - 1}&{2 - \lambda }&0\\ 0&0&{ - 2 - \lambda } \end{array}} \right| = 0\)

    ⇒ (1- λ) (2 - λ) (-2 - λ) – 1 (0) = 0

    ⇒ λ = 1, λ = 2, λ = -2

    If λ is an Eigen value pf A, then λn will be an Eigen value pf An.

    If λ is an Eigen value of A, then A, then k λ will be an Eigen value of kA where k is a scalar.

    Eigen values of A are 1, 2, -2

    Eigen values of A2 are 1, 4, 4

    Eigen values of A3 are 1, 8, -8

    Eigen values of 4A are 4, 8, -8

    Eigen values of 5I are 5, 5, 5

    B = A3 – A2 - 4A + 5I

    λ1B = λ13 λ12 1 + 5 = 1 - 1 - 4 + 5 = 1

    λ2B = λ23 λ22 2 + 5 = 8 - 4 - 8 + 5 = 1

    λ3B = λ33 λ32 3 + 5 = -8 - 4 + 8 + 5 = 1

    Eigen values of B are 1, 1, 1

    Determine of matrix = product of Eigen values = 1
  • Question 16
    2 / -0.33

    \(\left[ {\begin{array}{*{20}{c}} 4&5&x\\ 5&6&y\\ 6&k&z \end{array}} \right]\)

    For the given matrix, if x, y, z are in AP with a common difference d and the rank of the matrix is 2, then which of the following results is/are always correct?

    Solution

    Since x, y, z are in A.P with common difference ‘d’, we can write:

    x = x,

    y = x + d,

    z = x + 2d

    The given matrix can now be written as:

    \(\left[ A \right] = \left[ {\begin{array}{*{20}{c}} 4&5&x\\ 5&6&{x + d}\\ 6&k&{x + 2d} \end{array}} \right]\)

    Applying R2 → R2 – R1, we get the equivalent matrix as:

    \(\left[ A \right] \approx \left[ {\begin{array}{*{20}{c}} 4&5&x\\ 1&1&d\\ 1&{k - 6}&d \end{array}} \right]\)

    Applying R3 → R3 – R2, we get:

    \(\left[ A \right] \approx \left[ {\begin{array}{*{20}{c}} 4&5&x\\ 1&1&d\\ 0&{k - 7}&0 \end{array}} \right]\)

    For the rank of the matrix to be 2, the determinant of the above must be 0, i.e.

    |A| = 0

    Solving for the determinant, we get:

    (k - 7) (4d - x) = 0

    k = 7 or x = 4d

    ∴ For k = 7, and x = 4d

  • Question 17
    2 / -0.33
    The boundary value problem y” + λy = 0, y’(0) = y’(π) = 0 will have non zero solutions if and only if the values of λ are
    Solution

    We have y” + λy = 0

    The auxillary equation will be:

    D2 + λ = 0

    \(D = \pm \sqrt \lambda \;i\) 

    ∴ The solution will be:

    \({y_1} = {C_1}\cos \sqrt k \;\lambda x + {C_2}\sin \sqrt \lambda \;x\) 

    \(y' = - {C_1}\sqrt \lambda \sin \sqrt \lambda \;x + {C_2}\sqrt \lambda \cos \sqrt \lambda \;x\) 

    From y’(0) = 0, we get:

    \(0 = {C_2}\sqrt \lambda \) 

    C2 = 0

    For y’(π) = 0, we get:

    \(0 = - {C_1}\sqrt \lambda \sin \sqrt \lambda \;\pi\) 

    \(\sin \sqrt \lambda \;\pi = \sin n\pi \) 

    \(\sqrt \lambda = n\) 

    λ = n2

    Thus, λ has values 1, 4, 9, …  
  • Question 18
    2 / -0.33
    In Taylor's series expansion of exp (x) + sin (x) about the point x = r, the coefficient of (x – π)2 is
    Solution

    Concept:

    Taylor Series expansion for f(x) about x = a is given as:

    \({\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{a}} \right) + {\rm{f'}}\left( {\rm{a}} \right)\left( {{\rm{x}} - {\rm{a}}} \right) + \frac{{{\rm{f''}}\left( {\rm{a}} \right)}}{{2!}}{\left( {{\rm{x}} - {\rm{a}}} \right)^2} + \frac{{{\rm{f'''}}\left( {\rm{a}} \right)}}{{3!}}{\left( {{\rm{x}} - {\rm{a}}} \right)^3} + \ldots \)

    Calculation:

    Let f(x) = ex

    \({\rm{f}}\left( {\rm{x}} \right) = {{\rm{e}}^{\rm{\pi }}} + {{\rm{e}}^{\rm{\pi }}}\left( {{\rm{x}} - {\rm{\pi }}} \right) + \frac{{{{\rm{e}}^{\rm{\pi }}}}}{{2!}}{\left( {{\rm{x}} - {\rm{\pi }}} \right)^2} + \frac{{{{\rm{e}}^{\rm{\pi }}}}}{{3!}}{\left( {{\rm{x}} - {\rm{\pi }}} \right)^3} + \ldots \)

    Coefficient of (x - π)2 = 0.5 eπ

    Let f(x) = sin x

    \({\rm{f}}\left( {\rm{x}} \right) = \sin {\rm{\pi }} + \cos {\rm{\pi }}\left( {{\rm{x}} - {\rm{\pi }}} \right) - \frac{{\sin {\rm{\pi }}}}{{2!}}{\left( {{\rm{x}} - {\rm{\pi }}} \right)^2} + \frac{{\cos {\rm{\pi }}}}{{3!}}{\left( {{\rm{x}} - {\rm{\pi }}} \right)^3} + \ldots {\rm{\;}}\)

    \( = 0 - \left( {{\rm{x}} - {\rm{\pi }}} \right) - 0 - \frac{1}{{3!}}{\left( {{\rm{x}} - {\rm{\pi }}} \right)^3} + \ldots \)

    Coefficient of (x - π)2 = 0

    Coefficient of (x - π)2 in the expansion of ex + sin x = 0.5 eπ + 0 = 0.5 eπ
  • Question 19
    2 / -0.33

    Consider the system of equations \(\left[ {\begin{array}{*{20}{c}}1&3&2\\2&2&{ - 3}\\4&4&{ - 6}\\2&5&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\1\\2\\1\end{array}} \right]\) The value of x3 (round off to the nearest integer), is ______.

    Solution

    The given system has 4 equations and 3 unknowns.

    Hence it is a over-determined system of equations.

    The equations are;

    x1 + 3x2 + 2x3 = 1       --(1)

    2x1 + 2x2 - 3x3 = 1     ---(2)

    4x1 + 4x2 - 6x3 = 2     ---(3)

    2x1 + 5x2 + 2x3 = 1     ---(4)

    Note that equation (2) and (3) are linearly dependent on each other and equation 3 is twice that of equation (2).

    Hence considering equation 1, 2 and 4 -

    \(\left[ \begin{matrix} 1 & 3 & 2 \\ 2 & 2 & -3 \\ 2 & 5 & 2 \\ \end{matrix} \right]\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ {{x}_{3}} \\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\ 1 \\ 1 \\ \end{matrix} \right]\)

    R2 → R2 - 2R1 and R3 → R3 - 2R1

    \(\left[ \begin{matrix} 1 & 3 & 2 \\ 0 & -4 & -7 \\ 0 & -1 & -2 \\ \end{matrix} \right]\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ {{x}_{3}} \\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\ -1 \\ 1 \\ \end{matrix} \right]\)

    \({{R}_{1}}\to {{R}_{3}}-\frac{{{R}_{2}}}{4}\)

    \(\left[ \begin{matrix} 1 & 3 & 2 \\ 0 & -4 & -7 \\ 0 & 0 & -\frac{1}{4} \\ \end{matrix} \right]\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ {{x}_{3}} \\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\ -1 \\ -\frac{3}{4} \\ \end{matrix} \right]\)

    \(\Rightarrow 0.{{x}_{1}}+0.{{x}_{2}}+\left( -\frac{1}{4} \right)\times {{x}_{3}}=\frac{-3}{4}\)

    x3 = 3

    Important point:

    (1) Under-determined system: Number of equations < Number of unknowns

    (2) Over-Determined system: Number of equation > Number of unknowns

    (3) Equally Determined system: Number of equation = Number of unknowns

  • Question 20
    2 / -0.33

    If the following integral is evaluated using Cauchy’s Integral formula

    \(\underset{\left| z \right|=1}{\overset{{}}{\mathop \oint }}\,\frac{{{e}^{kz}}}{z}dz\) where k is a real constant.

    Then the value of integral

    \(\underset{0}{\overset{2\pi }{\mathop \oint }}\,{{e}^{k\cos \theta }}\sin \left( k\sin \theta \right)d\theta =\)
    Solution

    Concept:

    \(\int f\left( z \right)dz=2\pi \left[ sum~of~residue \right]\) 

    Calculation:

    Residue

    \(\begin{matrix} lt \\ z\to 0 \\\end{matrix}~z\left( \frac{{{e}^{kz}}}{z} \right)=1\) 

    \(\mathop{\oint }_{\left| z \right|=1}^{{}}{{e}^{\frac{kz}{z}}}dz=2\pi i\left[ 1 \right]=2\pi i\) 

    Substitute

    z = e

    z = cos θ + i sin θ

    dz = i e

    \(2\pi i=\underset{z=1}{\overset{{}}{\mathop \oint }}\,\frac{{{e}^{kz}}}{z}dz=\underset{0}{\overset{2\pi }{\mathop \int }}\,\frac{{{e}^{k\left( \cos \theta +i\sin \theta \right)}}}{{{e}^{i\theta }}}i{{e}^{i\theta }}d\theta\) 

    \(=i\underset{0}{\overset{2\pi }{\mathop \int }}\,{{e}^{k\cos \theta }}\left[ \cos \left( k\sin \theta \right)+i\left( k\sin \theta \right) \right]d\theta \) 

    Equating the real and imaginary part

    \(0=\underset{0}{\overset{2\pi }{\mathop \int }}\,{{e}^{k\cos \theta }}\sin \left( k\sin \theta \right)d\theta \) 

    \(2\pi =\underset{0}{\overset{2\pi }{\mathop \int }}\,{{e}^{k\cos \theta }}\cos \left( k\sin \theta \right)d\theta \) 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now