Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33

    Consider the differential equation:

    \(\frac{{{d^4}y}}{{d{x^4}}}\cos \left( {\frac{{{d^3}y}}{{d{x^3}}}} \right) = 0\)

    Which of the following is/are true regarding the above differential equation.
    Solution

    Concept:

    The order of differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative occurring in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    Calculation:

    The given differential equation is

    \(\frac{{{d^4}y}}{{d{x^4}}} = \cos \left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)\)

    The highest derivative in the given differential equation is 4. Hence the order is 4.

    To observe the degree, the given differential equation must be expressed in a form free from radicals as the derivatives are concerned.

    The above equation is expressed in terms of cos function. Hence degree is not defined. 

  • Question 2
    2 / -0.33
    Which of the following vector function is solenoidal?
    Solution

    1. \({\vec F_1} = \left( {x + y} \right)\hat i + \left( {2y - 3z} \right)\hat j + \left( {3x - 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_1} = 1 + 2 - 4 = - 1 \ne 0\) 

    Therefore, \({\vec F_1}\) is not solenoidal.

    2. \({\vec F_2} = \left( {x - y} \right)\hat i + \left( {2y - z} \right)\hat j + \left( {3x - 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_2} = 1 + 2 - 4 = - 1 \ne 0\) 

    Therefore, \({\vec F_2}\) is not solenoidal.

    3. \({\vec F_3} = \left( {2x - y} \right)\hat i + \left( {y - 3z} \right)\hat j + \left( {3x + 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_3} = 2 + 1 + 4 = 8 \ne 0\) 

    Therefore, \({\vec F_3}\) is not solenoidal.

    4. \({\vec F_4} = \left( {2x + y} \right)\hat i + \left( {2y - 3z} \right)\hat j + \left( {3x - 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_4} = 2 + 2 - 4 = 0\) 

    Therefore, \({\vec F_4}\) is solenoidal.

  • Question 3
    2 / -0.33

    Consider a cube defined by

    x, y, z ∈ [1, 3]

    If vector, \(\vec A = 2{x^2}y{\hat a_x} + 3{x^2}{y^2}{\hat a_y}\)

    ∇.A at the center of the cube will be 
    Solution

    Concept:

    \(f = {f_x}\hat i + {f_y}\hat i + {f_2}\hat k\)

    The divergence of the above vector field is defined as

    \(\nabla \cdot f = \frac{d}{{dx}}{f_x} + \frac{{d{f_1}}}{{dy}} + \frac{{d{f_2}}}{{dz}}\)

    Application:

    \(A = 2{x^2}y\;\hat i + 3{x^2}{y^2}\hat j + 0\;\hat k\)

    \(\nabla \cdot A = \frac{d}{{dx}}\left( {2{x^2}y} \right) + \frac{d}{{dy}}\left( {3{x^2}{y^2}} \right)\)

    \(= 4xy + 6{x^2}y\)

    Given (x, y, z) ∈ [1, 3], i.e. the cube coordinates lies in the range:

    1 ≤ x ≤ 3

    1 ≤ y ≤ 3

    1 ≤ z ≤ 3

    ∴ Midpoint (M) of the cube will be:

    \(M = \frac{{{x_2} + {x_1}}}{2},\frac{{{y_2} + {y_1}}}{2},\frac{{{z_2} + {z_1}}}{2}\)

    Putting on the respective values, we get:

    M = (2, 2, 2)

    ∴ The divergence of the vector A̅ at the given mid point (M) will be:

    A(2, 2, 2) = 4(2) (2) + 6(22) (2)

    = 16 + 48 = 64

  • Question 4
    2 / -0.33
    Let f = yx. What is \(\frac{{{\partial ^2}f}}{{\partial x\partial y}}\) at x = 2, y = 1?
    Solution

    Given f(x, y) = yx

    First, partially differentiate the function with respect to y, we get:

    \(\frac{{\partial f}}{{\partial y}} = x{y^{x - 1}}\) 

    Again differentiating it with respect to x, we get:

    \(\frac{{{\partial ^2}f}}{{\partial x\partial y}} = {y^{x - 1}}\left( 1 \right) + x\left( {{y^{x - 1}}\log y} \right)\) 

    \( = {y^{x - 1}}(x\log y + 1)\) 

    At x = 2, y = 1

    \(\frac{{{\partial ^2}f}}{{\partial x\partial y}} = {\left( 1 \right)^{2 - 1}}\left( {2\log 1 + 1} \right)\) 

    = 1(2 × 0 + 1) = 1

  • Question 5
    2 / -0.33
    All the eigenvalues of the matrix \(\left[ {\begin{array}{*{20}{c}} 1&2&0\\ 2&1&0\\ 0&0&{ - 1} \end{array}} \right]\) are in the disc.
    Solution

    For eigenvalues of the matrix:

    \(\left| {\begin{array}{*{20}{c}} {1 - λ }&2&0\\ 2&{1 - λ }&0\\ 0&0&{ - 1 - λ } \end{array}} \right| = 0\)

    From the above, we can write:

    (-1 - λ) [(1 - λ)2 - 4] = 0

    The above can be written as:

    (-1 - λ) [(1 - λ) + 2][(1 - λ) - 2] = 0

    (λ + 1)( -1 - λ)(3 - λ) = 0

    λ = -1, -1, 3

    ∴ All the Eigen values are in the range:

    -1 ≤ λ ≤ 3

    -2 ≤ λ -1 ≤ 2

    |λ - 1| ≤ 2

  • Question 6
    2 / -0.33

    Let X be a random variable with distribution

    X

    1

    2

    3

    P(X)

    0.3

    0.5

    0.2

    Solution

    Concept:

    \({\rm{Standard\;deviation\;}}\left( {\rm{\sigma }} \right) = \sqrt {E\left( {{X^2}} \right) - {{\left( {E\left( X \right)} \right)}^2}} \)

    \(E\left( X \right) = \mathop \sum \nolimits_{i = 1}^3 {X_i}.P\left( {{X_i}} \right)\)

    Calculation:

    E(X) = 1(0.3) + 2(0.5) + 3(0.2)

    E(X) = 1.9

    Now,

    \(E\left( {{X^2}} \right) = \mathop \sum \nolimits_{i = 1}^3 X_i^2.P\left( {{X_i}} \right)\)

    E(X2) = 12 (0.3) + 22 (0.5) + 32 (0.2)

    E(X2) = 4.1

    \(\therefore \sigma = \sqrt {4.1 - {{\left( {1.9} \right)}^2}} \)

    σ = 0.7 

  • Question 7
    2 / -0.33
    Let the characteristic equation of a 3 X 3 Matrix A be \({\lambda ^3} + a{\lambda ^2} + 47\lambda \; - \;60 = 0\) if one eigenvalue of A is 4 and a is an integer value, then what is the smallest eigenvalue of A?
    Solution

    \({\lambda ^3} + \;a{\lambda ^2} + 47\lambda \; - \;60 = 0\)

    Since one eigenvalue of matrix is 4 it satisfies the characteristic equation

    \({4^3} + \;a{4^2} + 47\left( 4 \right)\; - \;60 = 0\)

    \(64 + \;16a + 188\; - \;60 = 0\)

    \(a = \; - 12\)

    \({\lambda ^3} - 12\;{\lambda ^2} + 47\lambda \; - \;60 = 0\)

    Solving this will give

    \(\left( {\lambda - \;3} \right)\left( {\lambda \; - \;4} \right)\left( {\lambda \; - \;5} \right) = 0\)

    \(\lambda \; = \;3\;or\;\lambda \; = \;4\;or\;\lambda \; = \;5\)

    smallest eigenvalue is 3
  • Question 8
    2 / -0.33
    A function y = 5x2 + 10x is defined over an open interval x = (1, 2). Atleast at one point in this interval, dy/dx is exactly ________.
    Solution

    y = f(x) = 5x2 + 10x in the internal x = (1, 2)

    Since, the function y is continuous in the interval (1, 2), as well as is differentiable at each point so, from Lagrange mean value theorem there exist at least a point where:

    \(f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\) 

    Here, we have

    a = 1, b = 2

    So, for x = a = 1, we obtain:

    y = f(a) = f(1) = 5(1)2 + 10(1) = 15

    and for x = b = 2

    y = f(b) = f(2) = 5(2)2 + 10(2) = 40

    Therefore:

    \(f'\left( c \right) = \frac{{40 - 15}}{{2 - 1}} = 25\) 

  • Question 9
    2 / -0.33

    Determine the volume of the solid of revolution formed when the curve y = 2 is rotated 360° about the x-axis between the limits x = 0 to x = 3.

    Solution

    Concept:

    Revolution about x-axis: The volume of the solid generated by the revolution about the x-axis, of the area bounded by the curve y = f(x), the x-axis and the ordinates x = a and x = b is

    \(V = \mathop \smallint \nolimits_a^b π {y^2}dx\)

    Calculation:

    \(V = \mathop \smallint \nolimits_a^b π {y^2}dx \)

    \(= \mathop \smallint \nolimits_0^3 π {\left( 2 \right)^2}dx = \mathop \smallint \nolimits_0^3 4π dx \)

    \(= \left[ {4π x} \right]_0^3 \)

    = 12 π cubic meters

  • Question 10
    2 / -0.33
    A missile can successfully hit a target with probability 0.75. If three successful hits can destroy the target completely, how many minimum missiles must be fired so that the probability of the completely destroying the target is not less than 0.95?
    Solution

    Let X be the number of successful hits.

    Suppose n missiles are fired.

    P(X ≥ 3) ≥ 0.95

    From binominal distribution,

    1 – P(X < 3) ≥ 0.95

    P(X < 3) ≤ 0.05

    P(X = 0) + P(X = 1) + P(X = 2) ≤ 0.05

    \( \Rightarrow {n_{{c_0}}}{p^0}{q^n} + {n_{{c_1}}}p\;{q^{n - 1}} + {n_{{c_2}}}{p^2}{q^{n - 2}} \le 0.05\) 

    \( \Rightarrow {\left( {\frac{1}{4}} \right)^n} + n \cdot \left( {\frac{3}{4}} \right){\left( {\frac{1}{4}} \right)^{n - 1}} + \left( {\frac{n}{2}} \right){\left( {\frac{3}{4}} \right)^2}{\left( {\frac{1}{4}} \right)^{n - 2}} \le 0.05\) 

    10 (9n2 – 3n + 2) 4n.

    The minimum number of n for which the above equation satisfies is, n = 6.
  • Question 11
    2 / -0.33
    The solution of the differential equation \(\frac{{{d^2}u}}{{d{x^2}}} - k\frac{{du}}{{dx}} = 0\) where k is a constant, subjected to the boundary conditions u(0) = 0 and u(L) = U, is
    Solution

    We have:

    \(\frac{{{d^2}u}}{{d{x^2}}} - k\frac{{du}}{{dx}} = 0\) 

    (D2 – kD) u = 0

    The Auxillary Equation will be:

    m2 – km = 0

    m (m – k) = 0

    m = 0, k

    Thus, the complete solution will be:

    \(u = {C_1}{e^{0x}} + {C_2}{e^{kx}}\)

    \(u = {C_1} + {C_2}{e^{kx}}\)

    From the given conditions, we get:

    u(0) = 0, i.e.

    0 = C1 + C2

    C1 + C2 = 0   ---(1)

    And

    u(L) = U, i.e.

    \(U = {C_1} + {C_2}\;{e^{kL}}\)   ---(2)

    Subtracting equation (1) from (2), we get:

    \(U={C_2}\left( {{e^{kL}} - 1} \right)\)

    \({C_2} = \frac{U}{{\left( {{e^{kL}} - 1} \right)}}\)

    From equation (1), we have:

    \({C_1} = - {C_2} = \frac{{ - U}}{{\left( {{e^{kL}} - 1} \right)}}\)

    Substitute these values in the expression for u, we get:

    \(u = \frac{{ - U}}{{\left( {{e^{kL}} - 1} \right)}} + \frac{U}{{\left( {{e^{kL}} - 1} \right)}}{e^{kx}}\)

    \( u= U\left( {\frac{{1 - {e^{kx}}}}{{1 - {e^{kL}}}}} \right)\)

  • Question 12
    2 / -0.33

    Consider the following system of equations in x, y, z:

    x + 2y + 2z = 1

    x + ay + 3z = 3

    x + 11y + az = b

    For what positive value of a, the system doesn’t have a unique solution?
    Solution

    Concept:

    Consider the system of m linear equations

    a11 x1 + a12 x2 + … + a1n xn = b1

    a21 x1 + a22 x2 + … + a2n xn = b2

    am1 x1 + am2 x2 + … + amn xn = bm

    The above equations containing the n unknowns x1, x2, …, xn. To determine whether the above system of equations is consistent or not, we need to find the rank of following matrices.

    \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}\\ \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}} \end{array}} \right]\) and \(\left[ {A{\rm{|}}B} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}&{{b_1}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}&{{b_2}}\\ \ldots & \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}}&{{b_m}} \end{array}} \right]\)

    A is the coefficient matrix and [A|B] is called as augmented matrix of the given system of equations.

    We can find the consistency of the given system of equations as follows:

    (i) If the rank of matrix A is equal to rank of an augmented matrix and it is equal to the number of unknowns, then the system is consistent and there is a unique solution.

    The rank of A = Rank of augmented matrix = n

    (ii) If the rank of matrix A is equal to rank of an augmented matrix and it is less than the number of unknowns, then the system is consistent and there are an infinite number of solutions.

    The rank of A = Rank of augmented matrix < n

    (iii) If the rank of matrix A is not equal to rank of the augmented matrix, then the system is inconsistent, and it has no solution.

    The rank of A ≠ Rank of an augmented matrix

    Calculation:

    The given system of equations can be represented in a matrix form as shown below.

    \(A = \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 1&a&3\\ 1&{11}&a \end{array}} \right],X = \left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 1\\ 3\\ b \end{array}} \right]\)

    The Augmented matrix can be written by

    \([A|B] = \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 1&a&3\\ 1&{11}&a \end{array}{\rm{|}}\begin{array}{*{20}{c}} 1\\ 3\\ b \end{array}} \right]\)

    R3 → R3 – R1

    R2 → R2 – R1

    \(= \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 0&{a - 2}&1\\ 0&9&{a - 2} \end{array}{\rm{|}}\begin{array}{*{20}{c}} 1\\ 2\\ {b - 1} \end{array}} \right]\)

    \({R_3} \to {R_3} - \left( {\frac{9}{{a - 2}}} \right){R_2}\)

    \(= \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 0&{a - 2}&1\\ 0&0&{\frac{{{{\left( {a - 2} \right)}^2} - 9}}{{a - 2}}} \end{array}{\rm{|}}\begin{array}{*{20}{c}} 1\\ 2\\ {\frac{{\left( {a - 2} \right)\left( {b - 1} \right) - 18}}{{a - 2}}} \end{array}} \right]\)

    The system ho have a unique solution, \(\frac{{{{\left( {a - 2} \right)}^2} - 9}}{{a - 2}} \ne 0\)

    ⇒ (a - 2)2 – 9 ≠ 0

    ⇒ a – 2 ≠ ±3

    ⇒ a ≠ -1 or 5

    The system doesn’t have a unique solution for a = -1 and 5
  • Question 13
    2 / -0.33
    Consider the hemisphere x2 + y2 + (z - 2)2 = 9, 2 ≤ z ≤ 5 and the vector field F = xi + yj + (z - 2)k The surface integral ∬ (F ⋅ n) dS, evaluated over the hemisphere with n denoting the unit outward normal vector, is
    Solution

    The unit vector normal to the surface will be given by:

    \(n = \frac{{\nabla \phi }}{{\left| {\nabla \phi } \right|}}\)

    ϕ = x2 + y2 + (z - 2)2 = 9

    ∇ϕ = 2xi + 2yj + 2(z - 2) k

    \(n = \frac{{xi + 2yj + \left( {z - 2} \right)k}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}} }}\)

    \(F \cdot n = \left[ {xi + yj + \left( {z - 2} \right)k} \right]\frac{{\left[ {xi + yj + \left( {z - 2} \right)} \right]k}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}} }}\)

    \(F \cdot n = \frac{{{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}} }}\)

    \(= \frac{9}{{\sqrt 9 }} = \frac{9}{3} = 3\)

    Thus:

    \(\int\!\!\!\int \left( {F \cdot n} \right)dxdy=\int\!\!\!\int 3dxdy \)

    \(= 3\int\!\!\!\int dxdy\)

    3 × Area = 3 × π (3)2

    = 27 π  

  • Question 14
    2 / -0.33
    If y(x) is the solution of the differential equation \(\frac{{dy}}{{dx}} = 2\left( {1 + y} \right)\sqrt y \) satisfying y(0) = 0 and \(y\left( {\frac{x}{2}} \right) = 1\), the largest interval (to the right of the origin) on which the solution exists is
    Solution

    We have \(\frac{{dy}}{{dx}} = 2\left( {1 + y} \right)\sqrt y \) 

    \(\frac{{dy}}{{2\left( {1 + y} \right)\sqrt y }} = dx\) 

    \(\frac{{dt}}{{1 + {t^2}}} = dx\) 

    Putting √y = t, the above expression becomes:

    tan-1 t = x + C1

    \({\tan ^{ - 1}}\sqrt y = x + {C_1}\) 

    From y(0) = 0 we get:

    tan-1 (0) = 0 + C1

    C1 = mπ

    From y(x/2) = 1 we get:

    \({\tan ^{ - 1}}\left( 1 \right) = \frac{\pi }{2} + C\) 

    \(n\pi + \frac{\pi }{4} = \frac{\pi }{2} + {C_1}\) 

    \({C_1} = n\pi - \frac{\pi }{4}\) 

    Clearly, the solution exists on [0, 2π] 

  • Question 15
    2 / -0.33
    In the Laurent series expansion of \(f\left( z \right)=\frac{1}{z-1}-\frac{1}{z-2}\) valid in the region |z| > 2, then the coefficient of 1/z2 is:
    Solution

    Concept:

    Laurentz Series is obtained by the arrangement and manipulation of standard series or expansions, i.e.

    (1 - x)-1 = 1 + x + x2 + x3 + …… |x| < 1

    (1 + x)-1 = 1 – x + x2 – x3 + ….. |x| < 1

    (1 - x)-2 = 1 + 2x + 3x2 + ….. |x| < 1

    (1 + x)-2 1 – 2x + 3x2 – 4x2 + …. |x| < 1

    Observe that in all the expansions; |x| should be less than 1.

     ∴ We need to manipulate the variable to satisfy the above condition.

    Application:

    Given region |z| < 2

    \(\frac{2}{\left| z \right|}<1\) 

    \(\frac{1}{\left| z \right|}<\frac{1}{2}\) 

    This can be interpreted as \(\frac{1}{\left| z \right|}<1\) 

    \(f\left( z \right)=\frac{1}{z-1}-\frac{1}{z-2}\) 

    \(f\left( z \right)=\frac{1}{z}\left[ \frac{1}{1-\frac{1}{z}}-\frac{1}{1-\frac{2}{z}} \right]\) 

    \(Since~\frac{1}{1-\frac{1}{z}}={{\left( 1-\frac{1}{z} \right)}^{-1}}\) 

    \(\left| \frac{1}{z} \right|<1\Rightarrow {{\left( 1-\frac{1}{z} \right)}^{-1}}=1+\frac{1}{z}+\frac{1}{{{z}^{2}}}+\ldots \) 

    Similarly, we can write:

    \(\frac{1}{1-\frac{2}{z}}={{\left( 1-\frac{2}{z} \right)}^{-1}}\) 

    \(\left| \frac{2}{z} \right|<1\Rightarrow {{\left( 1-\frac{2}{z} \right)}^{-1}}=1+\frac{2}{z}+{{\left( \frac{2}{z} \right)}^{2}}+\ldots \) 

    \(\therefore f\left( z \right)=\frac{1}{2}\left[ \left[ 1+\frac{1}{z}+\frac{1}{{{z}^{2}}}+\ldots \right]-\left[ 1+\frac{2}{z}+{{\left( \frac{2}{z} \right)}^{2}}+\ldots \right] \right]\) 

    \(=\left[ \left[ \frac{1}{2}+\frac{1}{{{z}^{2}}}+\frac{1}{{{z}^{3}}}+\ldots \right]\left[ \frac{1}{z}+\frac{2}{{{z}^{2}}}+\frac{4}{{{z}^{2}}}+\ldots \right] \right]\) 

    Coefficient of \(\frac{1}{{{z}^{2}}}=1-2=~-1\)
  • Question 16
    2 / -0.33
    Let \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right)\) then which of the following statements is/are true?
    Solution

    Concept:

    If A is any square matrix of order n, we can form the matrix [A – λI], where I is the nth order unit matrix. The determinant of this matrix equated to zero i.e. |A – λI| = 0 is called the characteristic equation of A.

    The roots of the characteristic equation are called Eigenvalues or latent roots or characteristic roots of matrix A.

    Eigenvector (X) that corresponding to Eigenvalue (λ) satisfies the equation AX = λX.

    Properties of Eigenvalues:

    The sum of Eigenvalues of a matrix A is equal to the trace of that matrix A

    The product of Eigenvalues of a matrix A is equal to the determinant of that matrix A

    Calculation:

    \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right)\)

    The given matrix is triangular.

    Therefore, Eigenvalues = diagonal elements

    = 1, 1

    As the Eigenvalues are not unique, it is not diagonalizable.

    Determinant of A = 1 ≠ 0

    Therefore A is non-singular

    To get Eigenvector,

    Ax = λx

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] = 1\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} {{x_1} - {x_2}}\\ {{x_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)

    ⇒ x2 = 0 and x1 can be any value.

    The Eigenvector is \(\left[ {\begin{array}{*{20}{c}} k\\ 0 \end{array}} \right]\) 

    Therefore, the given vector is Eigenvector.

  • Question 17
    2 / -0.33
    If the directional derivative of the function z = y2e2x at (2, -1) along the unit vector \(\vec b = \alpha \hat i + \beta \hat j\) is zero, then |α + β| equals
    Solution

    Concept:

    Directional derivative of a function f along the vector \(\hat u \) is given by:

    \(DD = \nabla f.\frac{{\vec u}}{{\left| u \right|}}\)

    where \(\frac{{\vec u}}{{\left| u \right|}}={\hat{u}}\)

    grad f or ∇ f is defined by the equation,

    \(grad\;f = \nabla f = i\frac{{\partial f}}{{\partial x}} + j\frac{{\partial f}}{{\partial y}} + k\frac{{\partial f}}{{\partial z}}\)

    Calculation:

    Given:

    z = y2e2x

    \(gradz\;= \nabla z \;=\; 2{y^2}{e^{2x}}\hat i + 2y{e^{2x}}\hat j\)

    At (2, -1), \(\nabla z = 2{e^4}\hat i - 2{e^4}\hat j\)

    Unit vector \(\vec b = \alpha \hat i + \beta \hat j\)

    Directional derivative \( = \nabla z.\vec b = \left( {2{e^4}\hat i - 2{e^4}\hat j} \right).\alpha \hat i + \beta \hat j\) = 2e4α – 2e4β

    Given that, the directional derivative is zero.

    ⇒ 2e4α – 2e4β = 0 ⇒ α = β

    As b is a unit vector, \(\sqrt {{\alpha ^2} + {\beta ^2}} = 1\)

    \( \Rightarrow \alpha = \beta = \frac{1}{{\sqrt 2 }}\)

    \(\left| {\alpha + \beta } \right| = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} = \sqrt 2 \)

  • Question 18
    2 / -0.33

    An analytic function of a complex variable \(z = x + iy\;\left( { i= \sqrt { - 1} } \right)\) is defined as

    f(z) = x2- y2 + iψ (x, y),

    where ψ(x,y) is a real function. The value of the imaginary part of f(Z) at z = (1 + i) is _______ (round off to 2 decimal places).

    Solution

    Concept:

    f(z) = ϕ + iψ

    ϕ = Real part, ψ = Imaginary part

    If f(z) is analytic function

    \(\left. {\begin{array}{*{20}{c}} {\frac{{\partial \phi }}{{\partial x}} = \frac{{\partial \psi }}{{\partial y}}}\\ {\frac{{\partial \psi }}{{\partial x}} = - \frac{{\partial \phi }}{{\partial y}}} \end{array}} \right\} \to C.R\;equation\)

    \(\therefore d\psi = \frac{{\partial \psi }}{{\partial x}}dx + \frac{{\partial \psi }}{{\partial y}}dy\)

    \(d\psi = \frac{{ - \partial \phi }}{{\partial y}}dx + \frac{{\partial \phi }}{{\partial x}} \ dy\)

    Calculation:

    Given, f(z) = x2 – y2 + i ψ (x, y)

    \(\phi = {x^2} - {y^2}\)

    ∵ f(z) is analytic function

    \(d\psi = \frac{{ - \partial \phi }}{{\partial y}}dx + \frac{{\partial \phi }}{{\partial x}} \cdot dy\)

    \(\frac{{\partial \phi }}{{\partial y}} = \; - 2y,\;\frac{{\partial \phi }}{{\partial x}} = 2x\)

    \(d\psi = 2y\;dx + 2x\;dy\)

    \(\smallint d\psi = 2\smallint d\left( {xy} \right)\)

    ψ = 2 xy

    Given, z = 1 + i

    Comparing it with z = x + iy 

    ∴ x = 1, y = 1

    \(\therefore {\left( \psi \right)_{\left( {1,\;1} \right)}} = 2 \times 1 \times 1=2\)

    ψ = 2 when z = 1 + i
  • Question 19
    2 / -0.33
    Consider a sequence of independent Bernoulli trials with probability of success in each trial being \(\frac{1}{5}\). Then which of the following statements is/are TRUE?
    Solution

    Concept:

    Binomial distribution:

    Let p is the probability that an event will happen in a single trail (called the probability of success) and

    q = 1 – p is the probability that an event will fail to happen (probability of failure)

    The probability that the event will happen exactly r times in n trails (i.e. x successes and n – r failures will occur) is given by the probability function

    \(f\left( x \right) = P\left( {X = r} \right) = {n_{{C_r}}}{p^r}{q^{n - r}}\)

    where the random variable X denotes the number of successes in n trials and r = 0, 1, 2, … n

    For Binomial distribution,

    Mean = μ = np

    Variance = σ2 = npq

    Standard deviation = σ = √(npq)

    Calculation:

    Let V be the event that occurs in a trial with probability p. Mathematical expectation E of the number of trials to first occurrence of V in a sequence of trials is E = 1/p.

    Similarly, the expected number of trials to get nth success = n/p

    Given that, the probability (p) = 1/5 = 0.2

    The expected number of trials to get first success = 1/0.2 = 5

    So, the expected number of failures preceding the first success is 4

    The expected number of trials to get second success = 2/0.2 = 10

    Expected number of successes in first 50 trials = np = 50 × 0.2 = 10

  • Question 20
    2 / -0.33
    The solution of DE y(x2 + y2 + 1) dy + [2x(x2 + y2) – 1] dx = 0 is
    Solution

    Let x2 + y2 = t

    Differentiating with respect to x, we get:

    \(2x + 2y\frac{{dy}}{{dx}} = \frac{{dt}}{{dx}}\) 

    \(\frac{y}{x}\frac{{dy}}{{dx}} = \frac{1}{{2x}}\frac{{dt}}{{dx}} - 1\) 

    Hence, the given equation becomes:

    \(\frac{1}{{2x}}\frac{{dt}}{{dx}} - 1 + \frac{{2t - 1}}{{t + 1}} = 0\) 

    \(\frac{1}{{2x}}\frac{{dt}}{{dx}} = 1 - \frac{{2t - 1}}{{t + 1}}\) 

    \(= \frac{{2 - t}}{{t + 1}}\) 

    \(2xdx = \frac{{t + 1}}{{2 - t}}dt\) 

    \(2xdx + \left( {1 + \frac{3}{{t - 2}}} \right)dt = 0\) 

    Integrating, we have

    x2 + t + 3 log (t – 2) = C

    2x2 + y2 + 3 log (x2 + y2 – 2) = C

    Which is the required solution.

  • Question 21
    2 / -0.33

    If the triple integral over the region bounded by the planes 2x + y + z = 4, x = 0, y = 0 and z = 0 is given by  \(\mathop \smallint \limits_0^2 \mathop \smallint \limits_0^{\lambda \left( x \right)} \mathop \smallint \limits_0^{\mu\left( {x,y} \right)} dx\;dy\;dz\)  then the function λ(x) – μ(x,y) is_________.

    Solution

    The given integration can be written as

    \(I = \mathop \smallint \limits_{x = 0}^{x = 2} \mathop \smallint \limits_{y = 0}^{y = \lambda \left( x \right)} \mathop \smallint \limits_{z = 0}^{z = \mu\left( {x,y} \right)} dz\;dy\;dx\)

    where the limit of z varies from

    z = 0 to z = 4 – (2x + y)

    ∵ μ(x,y) is a function of x,y therefore μ(x,y) is a limit of z.

    ∴ μ(x,y) = 4 – (2x + y)         

    After eliminating z value λ(x) is a function of x, hence λ(x) is a limit of y.

    For obtaining limit of y, we have to put z = 0 in the equation of plane,

    hence

    y = 4 – (2x + z)

    y = 4 – 2x (∵ z = 0)

    Hence, the limit of y will vary from y = 0 to y = 4 – 2x

    ∴ λ(x) = 4 – 2x

    ∴ λ(x) – μ(x,y) = 4 – 2x – (4 – (2x+y))

    = 4 – 2x – 4 + 2x + y

    = y

    Hence, λ(x) – μ(x,y) = y

  • Question 22
    2 / -0.33
    For real constants a and b, let \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\) be an orthogonal matrix. Then which of the following statements is/are always TRUE?
    Solution

    Concept:

    A square matrix ‘A’ is said to be orthogonal if it follows the following condition.

    AAT = ATA = I

    Calculation:

    \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\)

    \({M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right]\)

    \(M{M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right]\)

    For orthogonal matrix, MMT = I

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

    By comparing both the sides, we get

    \(\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }} = 0 \Rightarrow a + b = 0\)

    a2 + b2 = 1

    \(\Rightarrow b = \pm \sqrt {1 - {a^2}}\)

    Therefore, \(b = \sqrt {1 - {a^2}}\) is not always true.

    ⇒ (a + b)2 – 2ab = 1

    \(\Rightarrow ab = - \frac{1}{2}\)

    By using the relation, a + b = 0 i.e. b = -a, we get

    \( \Rightarrow a\left( { - a} \right) = - \frac{1}{2} \Rightarrow a = \pm \frac{1}{{\sqrt 2 }}\)

    For \(a = \frac{1}{{\sqrt 2 }},b = - \frac{1}{{\sqrt 2 }}\)\(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)

    \({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)

    \( = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {I_2}\)

    For \(a = \frac{{ - 1}}{{\sqrt 2 }},b = \frac{1}{{\sqrt 2 }}\)\(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)

    \({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)

    \( = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&0 \end{array}} \right] \ne {I_2}\)

    Therefore, M2 = I2 is not always true.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now