Self Studies

Design of Machine Elements Test 2

Result Self Studies

Design of Machine Elements Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    A ball bearing is anticipated to have a life of 400 M. Rev (Mega Revolutions) under an equivalent load of 10 kN, with reliability of 90%.  Now,
    Solution

    Concept:

    \(\mathop L\nolimits_{90} = \mathop {\left( {\frac{C}{P}} \right)}\nolimits^k \)

    L90 = Life of the bearing for 90% reliability

    C= Basic dynamic capacity

    P = Equivalent load

    k = 3 for ball bearing

    For 90% reliability,

    Given, P1 = 10 kN, P2 = 22kN, L1 = 400 M.Rev

    \(\begin{array}{l} \frac{{\mathop L\nolimits_2 }}{{\mathop L\nolimits_1 }} = \mathop {\left( {\frac{{\mathop P\nolimits_1 }}{{\mathop P\nolimits_2 }}} \right)}\nolimits^3 \\ \mathop L\nolimits_2 = 400\mathop {\left( {\frac{{10}}{{22}}} \right)}\nolimits^3 \end{array}\)

    L2 = 37.565 M.Rev

    For 60% reliability under an equivalent load of 22 kN

     

    \(\frac{L}{{\mathop L\nolimits_{90} }} = \mathop {\left( {\frac{{\ln \left( {\frac{1}{R}} \right)}}{{ln\left( {\frac{1}{{\mathop R\nolimits_{90} }}} \right)}}} \right)}\nolimits^{\frac{1}{{1.17}}} \)

    \(\frac{L}{{37.565}} = \mathop {\left( {\frac{{\ln \left( {\frac{1}{{0.6}}} \right)}}{{ln\left( {\frac{1}{{0.9}}} \right)}}} \right)}\nolimits^{\frac{1}{{1.17}}} \)

    L=144.79 M.Rev

     

  • Question 2
    2 / -0.33
    A natural feed journal bearing of diameter 50 mm and length 50 mm operating at 20 revolution/second carries a load of 2.0 kN. The lubricant used has a viscosity of 20 mPa s. The radial clearance is 50 μm. The Sommerfield number for the bearing is
    Solution

    Given that :

    Radial clearance, λ = 50 μm

    Load, F = 2 kN, N = 20 rps 

    diameter, d = 50 mm

    viscosity, μ = 20 mPa-s

    length, L = 50 mm                 

     

    \(P = \frac{F}{A} = \frac{F}{{L \times d}} \\= \frac{{2000}}{{50 \times 50}} = 0.8\;\frac{N}{{m{m^2}}}\)

    sommerfield number

    \(Z = \frac{{\mu N}}{P}{\left( {\frac{r}{\lambda}} \right)^2}\)

    \(= \frac{{\left( {20 \times {{10}^{ - 3}}} \right) \times 20}}{{\left( {0.8 \times {{10}^6}} \right)}} \times {\left( {\frac{{25\times10^{-3}}}{{50\times10^{-6}}}} \right)^2}\)

    = 0.125

  • Question 3
    2 / -0.33
    In the multiple disc clutch, if there are 6 discs on the driving shaft and 5 discs on the driven shaft, then the number of pairs of contact surfaces will be equal to
    Solution

    Concept:

    Number of pair in contact, N = n1 + n2 – 1

    where n1 is the number of discs on driving shaft and n2 is the number of discs on the driven shaft.

    Calculation:

    Given:

    n1 = 6, n2 = 5

    N = 6 + 5 – 1 ⇒ 10
  • Question 4
    2 / -0.33
    A belt having dimensions 25cm × 1.25cm has the ratio of tension 2 and maximum permissible tension is 150 N/cm2. The weight of belt material is 1400 N/m. The maximum power that can be transmitted (in kW) is
    Solution

    Given that,

    \(\frac{{{T_1}}}{{{T_2}}} = 2\),

    \({T_{max}} = 150\ N/c{m^2} = 150 \times 31.25 = 4687.5\ N\)

    For Maximum power, velocity of belt

    \(V = \sqrt {\frac{T_{max}}{{3 \times m}}} =\sqrt {\frac{{4687.5 \times 9.81}}{{3 \times 1400}}} = 3.308\ m/sec\)

    For maximum power

    \({T_c} = \frac{{{T_{max}}}}{3} = \frac{{4687.5}}{3} = 1562.5\ N\)

    Power transmitted \(= \left( {{T_1} - {T_2}} \right)V\)

    \(\left( {{T_1} - \frac{{{T_1}}}{2}} \right)V = {T_1}\left( {1 - \frac{1}{2}} \right)V = \left( {{T_{max}} - {T_c}} \right)\left( {1 - \frac{1}{2}} \right)V \)

    \(= \left( {{4687.5} - {1562.5}} \right)\left( {1 - \frac{1}{2}} \right)3.308= 5168.75 W = 5.168 kW \)

  • Question 5
    2 / -0.33
    A rectangular key of 14mm width, 8 mm height and a shaft of 30 mm diameter made up of same material. If the stress concentration is neglected, then the necessary length of the key for the equal shear strength of shaft and key (in mm), will be__
    Solution

    Given that, w = 14 mm, t = 8 mm, d = 30 mm

    \({\tau _{shaft}} = \frac{{16T}}{{\pi {d^3}}} = {\tau _{key}}\)

    Torque in the key for shear failure, is given by

    \(\begin{array}{l}T = {\tau _{key}} \times l \times w \times \frac{d}{2} \Rightarrow T = \frac{{16T}}{{\pi {d^3}}} \times l \times w \times \frac{d}{2}\\ \Rightarrow l = \frac{{\pi {d^3}}}{{8 \times wd}} \Rightarrow l = \frac{{\pi \times {{\left( {30} \right)}^3}}}{{8 \times 14 \times 30}} = 25.25\ mm\end{array}\)

  • Question 6
    2 / -0.33
    A rotating beam test specimen is subjected to alternating stress between 100 MPa and -130 MPa. Then which of the following statements are true?
    Solution

    Concept:

    \(\begin{array}{l} \mathop \sigma \nolimits_{\max } = 100MPa\\ \mathop \sigma \nolimits_{\min } = - 130MPa \end{array}\)

    Stress ratio = \(\frac{{\mathop \sigma \nolimits_{\min } }}{{\mathop \sigma \nolimits_{\max } }} = \frac{{ - 130}}{{100}} = - 1.3\)

    Variable stress(\(\mathop \sigma \nolimits_v \) = \(\frac{{\mathop \sigma \nolimits_{\max } - \mathop \sigma \nolimits_{\min } }}{2} = \frac{{100 - ( - 130)}}{2} = 115MPa\)

    Mean stress \(\mathop \sigma \nolimits_m \)\(\frac{{\mathop \sigma \nolimits_{\max } + \mathop \sigma \nolimits_{\min } }}{2} = \frac{{100 + ( - 130)}}{2} = - 15MPa\)

    Amplitude ratio = \(\frac{{\mathop \sigma \nolimits_v }}{{\mathop \sigma \nolimits_m }} = \frac{{115}}{{ - 15}} = \frac{{ - 23}}{3}\)

  • Question 7
    2 / -0.33
    A 4 meter long solid circular cylindrical shaft transmits 1600 kW at 500 rpm. The endurance limit of the material is 210 MPa and a factor of safety of 3 is to be used with respect to fatigue failure. Use G = 77.5 GPa. The design diameter ‘D’ of the shaft in metre is
    Solution

    Concept:

    The power transmitted by the shaft is, \(P=\frac{2\pi NT}{60}\)

    where, N = rpm of the shaft, T = torque transmitted by shaft.

    The shear stress in shaft is, \(τ =\frac{16T}{\pi d^3}\)...................(1)

    Apply Soderburg theory for ductile material, \(\frac{τ _m}{τ _{yt}}+\frac{τ _v}{τ _{e}}=\frac{1}{FOS}\)....................(2)

    where, τm = mean shear stress, τv = variable shear stress, τyt = yield strength, τe = endurance limit of the material, N = factor of safety

    Calculation:

    Given:

    Mean stress:

    \(τ _m=\frac{τ~+~(-τ)}{2}=0\)

    Variable stress:

     \(τ _v=\frac{τ~+~(τ)}{2}=τ\)

    τe = 0.5σe = 0.5 × 210 = 105 N/mm2, FOS = 3, P = 1600 kW, N = 500 rpm 

    Therefore, from equation (2), \(\frac{τ_v}{105}=\frac{1}{3}\)

    Therefore, τ = 35 N/mm2

    Torque:

    \(T=\frac{60~×~1600~×10^3}{2\pi~×~500}=\frac{96000}{\pi}~N-m\)

    Shear stress:

    From equation (1), \(τ =\frac{16T }{\pi d^3}\)

    ⇒ \(d=(\frac{16T}{\pi \tau})^\frac{1}{3}\) ⇒ \(d=(\frac{16~×~96000}{\pi^2 ~×~35~×~10^6})^\frac{1}{3}\)

    \(d=3\sqrt {\frac{{96}}{{4375{\pi ^2}}}} \)

  • Question 8
    2 / -0.33
    Radial load acting on a ball bearing is 2500 N for the first five revolutions and reduces to 1500 N for the next ten revolutions. The load variations then repeat itself. The expected life of the bearing is 20 million revolutions. The dynamic load capacity of the bearing is _________ N.
    Solution

    Concept:

    The equivalent load for a cyclic loading condition is given by:

    \({P_e} = \sqrt[3]{{\frac{{{N_1}{P_1}^3 + {N_2}{P_2}^3}}{{{N_1} + {N_2}}}}}\)

    The load capacity can be determined by:

    \(L\left( {in\;million\;rev} \right) = {\left( {\frac{C}{F}} \right)^3}\)

    Calculation:

    Given, N1 = 5 rev, N2 = 10 rev, P1 = 2500 N, P2 = 1500 N

    \({P_e} = \sqrt[3]{{\frac{{{N_1}{P_1}^3 + {N_2}{P_2}^3}}{{{N_1} + {N_2}}}}} = \sqrt[3]{{\frac{{5 \times {{2500}^3} + 10 \times {{1500}^3}}}{{5 + 10}}}} = 1953.8\;N\)

    \(20 = {\left( {\frac{C}{{1953.8}}} \right)^3} \Rightarrow C = {\left( {20} \right)^{\frac{1}{3}}} \times 1953.8 = 5303.43\;N\;\)

  • Question 9
    2 / -0.33
    A clutch has outer and inner radius of 50 mm and 20 mm respectively. The pressure at inner radius is 2 MPa and coefficient of friction is 0.4. Assuming uniform wear theory, which of the following statements are true?
    Solution

    Concept:

    In uniform wear theory, Pr = constant

    Calculation:

    Given:

    R0 = 50 mm, Ri = 20 mm

    \(\mu \) = 0.4

    Now,

    Torque transmitted

    \(T = \int\limits_{\mathop R\nolimits_i }^{\mathop R\nolimits_0 } {\mu P(2\pi r)rdr} \)

    \(\begin{array}{l} T = \mathop P\nolimits_i \mathop R\nolimits_0 \int\limits_{\mathop R\nolimits_i }^{\mathop R\nolimits_0 } {\mu (2\pi )rdr} \\ = \mathop P\nolimits_i \mathop R\nolimits_0 \mu (2\pi )\left( {\frac{{\mathop R\nolimits_0^2 - \mathop R\nolimits_i^2 }}{2}} \right)\\ = 2 \times 50 \times 0.4 \times 2\pi \times \left( {\frac{{\mathop {0.05}\nolimits^2 - \mathop {0.02}\nolimits^2 }}{2}} \right)\\ = 263.89Nm \end{array}\)

    \(\begin{array}{l} W = \int\limits_{\mathop R\nolimits_i }^{\mathop R\nolimits_0 } {P(2\pi )rdr} \\ = \mathop P\nolimits_i \mathop R\nolimits_0 (2\pi )(\mathop R\nolimits_0 - \mathop R\nolimits_i )\\ = 2 \times 50 \times 2\pi \times 30\\ = 18.849kN \end{array}\)

  • Question 10
    2 / -0.33
    A shaft of diameter D is subjected to a fluctuating torque of 200 Nm to 600 Nm. By assuming factor of safety (FOS) = 2.5, Syt = 200 MPa, Sut = 400 MPa, Kt = 2, q = 0.8, which of the following statements are true?
    Solution

    Concept:

    Given:

    Tmin = 200 Nm, Tmax = 600 Nm, Factor of safety (N) = 2.5

    Syt = 200 MPa, Sut = 400 MPa, Kt = 2, q = 0.8

    Calculation:

    Tm \(\frac{{200 + 600}}{2} = 400\) N.m

    Tv = 400 - 200 = 200 N.m

    \(\begin{array}{l} \mathop K\nolimits_f = 1 + q\left( {\mathop K\nolimits_t - 1} \right)\\ \mathop K\nolimits_f = 1 + 0.8\left( {2 - 1} \right) = 1.8 \end{array}\)

    \(\begin{array}{l} \mathop \tau \nolimits_m = \frac{{16\mathop T\nolimits_m }}{{\pi \mathop D\nolimits^3 }} = \frac{{16 \times 400}}{{\pi \mathop D\nolimits^3 }}\\ \mathop \tau \nolimits_v = \frac{{16\mathop T\nolimits_v }}{{\pi \mathop D\nolimits^3 }} = \frac{{16 \times 200}}{{\pi \mathop D\nolimits^3 }} \end{array}\)

    \(\begin{array}{l} \mathop \tau \nolimits_e = \mathop \sigma \nolimits_e^ * \mathop K\nolimits_a \mathop K\nolimits_b \mathop K\nolimits_c \\ \mathop \tau \nolimits_e = 0.5\mathop S\nolimits_{ut} \mathop K\nolimits_a \mathop K\nolimits_b \mathop K\nolimits_c \\ \mathop \tau \nolimits_e = 200MPa \end{array}\)(Assume Ka = Kb = Kc = 1, Since they are not given)

    \(\mathop \tau \nolimits_{ys} = \mathop S\nolimits_{ys} = 0.5 \times \mathop S\nolimits_{yt} = 100MPa\)

    \(\begin{array}{l} \frac{1}{N} = \frac{{\mathop \tau \nolimits_m }}{{\mathop \tau \nolimits_{ys} }} + \left( {\frac{{\mathop \tau \nolimits_v }}{{\mathop \tau \nolimits_e }}} \right)\mathop k\nolimits_f \\ \frac{1}{{2.5}} = \frac{{\left( {16 \times 400} \right)}}{{\pi \mathop D\nolimits^3 (100)}} + \left( {\frac{{16 \times 200 \times 1.8}}{{\pi \mathop D\nolimits^3 (200)}}} \right)\\ D = 41.95mm \end{array}\)

    Equivalent shear stress = \(\frac{{\mathop \tau \nolimits_{ys} }}{N} = \frac{{100}}{{2.5}} = 40MPa\)

  • Question 11
    2 / -0.33

    A spur gear has a module of 3mm, number of teeth 16, a face width of 36 mm and a pressure angle of 20°. It is transmitting a power of 3kW at 20rev/s. taking a velocity factor of 1.5 and a form factor of 0.3, the stress in the gear is about

    Solution

    Given : m = 3 mm, Z = 16, b = 36 mm, ϕ = 20°, 3 kW, n = 20 rev/s, CV = 1.5, y = 0.3

    Lewis equation for beam strength :

    Sb = mbσb γ

    Where Sb is beam strength of gear tooth (N), σb is permissible bending stress (N/mm2) and Y is Lewis form factor

    As Sb = m.b.σb.γ

    Where Sb is beam strength of gear tooth (N), σb is permissible bending stress (N/mm2) and Y is Lewis form factor

    As \(F=P/v; \\v=\frac{πDN}{60\times1000} =\frac{πDn}{1000};\\ m=\frac DZ⇒D=mZ\)

    \(S_b=\frac{P}{\frac{πDn}{1000}} = \frac{3000}{\frac{π.mZ.n}{1000}}=\frac{3000}{\frac{π\times3\times16\times20}{1000}}=994.72 N\)

    \(σ_b=\frac{S_b}{m.b.y}=\frac{994.72}{3×36×0.3}=30.70 N/mm^2 \)

    Permissible working stress (by considering dynamic load)

    σW = σb × CV = 30.70 × 1.5 = 46.05 N/mm2

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now