Self Studies

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    If A is a 3 × 3 real matrix with eigen values 1, 2, 3, then the matrix A satisfies
    Solution

    Explanation:

    Given that, 1, 2, 3 are Eigen values of A3×3

    We can write as,

    (λ – 1)(λ - 2)(λ - 3) = 0

    2 – 2λ - λ + 2) (λ - 3) = 0

    λ3 – 6λ2 + 11λ – 6 = 0

    This is a characteristic equation of A3×3

    By a Cayley-Hamilton theorem, matrix A satisfies its characteristic equation.

    i.e.

    A3 – 6A2 + 11A – 6I =  0
  • Question 2
    2 / -0.33

    For the given boundary conditions:

    y(0) = 3; \(\frac{{dy}}{{dx}} = 5\) at x = 5 and \(\frac{{{d^2}y}}{{d{x^2}}} = 0,\) then y(3) = ______

    Solution

    Explanation:

    \(\frac{{{d^2}y}}{{d{x^2}}} = 0\)

    \(\frac{{dy}}{{dx}} = {C_1} = 5\)

    y = C1x + C2

    at x = 0, y = 3

    3 = C2

    Hence, y = 5x + 3

    y(3) = 5 × 3 + 3 = 18

  • Question 3
    2 / -0.33
    Let P(E) denote the probability of the event E. If P(A) = \(\frac{3}{4}\) and P(B) = \(\frac{1}{2}\) and A and B are mutually exhaustive events then P(A’ ∪ B’) is equal to _____.
    Solution

    Explanation:

    A and B are mutually exhaustive events

    Therefore, P(A ∪ B) = 1

    Now,

     P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

    \(1=\frac{3}{4}+\frac{1}{2}-P\left( A\cap B \right)\)

    \(\therefore P\left( A\cap B \right)=\frac{1}{4}\)

    Now,

    P(A’ ∪ B’) = P(A ∩ B)’

    P(A ∩ B) + P(A ∩ B)’ = 1

    \(\frac{1}{4}~+P{{\left( A\cap B \right)}^{'}}=1\)

    \(P\left( {A}'\cup {B}' \right)=P{{\left( A\cap B \right)}^{'}}=\frac{3}{4}=0.75\)

  • Question 4
    2 / -0.33
    If \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {4 - x}&{x \le 2}\\ {kx - 4}&{x > 2} \end{array}} \right.\) is a continuous function for all real values of x, then f(8) is equal to ________.
    Solution

    Explanation:

    For continuous function:

    \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\)

    \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {4 - x} \right) = \mathop {\lim }\limits_{x \to 2} \left( {4 - x} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {kx - 4} \right)\)

    (4 - 2) = 2 k - 4

    k = 3

    f(8) = k(8) - 4 = 3(8) - 4 = 20
  • Question 5
    2 / -0.33
    If V̅ = (x + 2y + az) i̅ + (bx – 3y – z) j̅ + (4x + cy + 2z) k̅ is irrotational, then which of the following is/are correct?
    Solution

    Explanation:

    \(curl\;\vec V = \bar 0\) (Given: It is irrorational)

    Now,

    \(\left| {\begin{array}{*{20}{c}} {\vec i}&{\vec j}&{\vec k}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {x + 2y + az}&{bx - 3y - z}&{4x + cy + 2z} \end{array}} \right| = \bar 0\)

    \( \Rightarrow \left( {c + 1} \right)\vec i - \left( {4 - a} \right)\vec j + \left( {b - 2} \right)\vec k = \bar 0\)

    Verify from the options

    ∴ c = -1, a = 4, b = 2

  • Question 6
    2 / -0.33
    If the Laplace transform of eωt is \(\frac{1}{{s - \omega }}\), the Laplace transform of \(t\cosh t\) is
    Solution

    Concept:

    Laplace transform of cosh at is, \(L\left( {\cosh at} \right) = \frac{s}{{{s^2} - {a^2}}}\)

    Laplace transform of cosh at is, \(L\left( {\sinh at} \right) = \frac{a}{{{s^2} - {a^2}}}\)

    If L{f(t)} = F(s) then \(L\left\{ {{t^n}f\left( t \right)} \right\} = {\left( { - 1} \right)^n}\frac{{{d^n}}}{{d{s^n}}}\left[ {F\left( s \right)} \right]\)

    Calculation:

    \(L\left( {\cosh t} \right) = \frac{s}{{{s^2} - 1}}\)

    \(L\left( {t\cosh t} \right) = - \frac{d}{{ds}}\left( {\frac{s}{{{s^2} - 1}}} \right)\)

    \( = - \frac{{\left( {{s^2} - 1} \right)\left( 1 \right) - s\left( {2s} \right)}}{{{{\left( {{s^2} - 1} \right)}^2}}}\)

    \( = \frac{{\left( {{s^2} + 1} \right)}}{{{{\left( {{s^2} - 1} \right)}^2}}}\)
  • Question 7
    2 / -0.33
    \(I = \mathop \smallint \limits_0^\infty \frac{{dx}}{{{{\left( {{x^2} + 1} \right)}^2}}}\) has the value
    Solution

    \(I = \mathop \smallint \limits_0^\infty \frac{{dx}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)

    Put x = tan θ

    ⇒ dx = sec2 θ dθ

    Limits will be: 0 to π/2

    \(I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{{{\sec }^2}\theta }}{{{{\left( {ta{n^2}\theta + 1} \right)}^2}}}d\theta\)

    \(= \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{{{\sec }^2}\theta }}{{{{\left( {{{\sec }^2}\theta } \right)}^2}}}d\theta\)

    \(= \mathop \smallint \limits_0^{\frac{\pi }{2}} {\cos ^2}\theta d\theta\)

    \(= \mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{1 + \cos 2\theta }}{2}d\theta\)

    \(= \frac{1}{2}\left[ {\theta + \frac{1}{2}\sin 2\theta } \right]_0^{\frac{\pi }{2}} = \frac{\pi }{4} = 0.785\)
  • Question 8
    2 / -0.33

    The value of \(\mathop \smallint \limits_c \frac{{{e^z}dz}}{{{{\left( {z - 3} \right)}^2}}}\) c being |z| = 2 is

    Solution

    Explanation:

    \(f\left( z \right) = \frac{{{e^z}}}{{{{\left( {z - 3} \right)}^2}}}\)

    C being |z| = 2

    Poles of f(z) are z = 3, 3

    Poles are lying outside the curve. Hence by Cauchy’s integral theorem,

    \(\mathop \smallint \limits_c \frac{{{e^z}}}{{{{\left( {z - 3} \right)}^2}}} = dz = 0\)

  • Question 9
    2 / -0.33
    Which of the following recursion relation to solve x = e-x using Newton – Raphson method is/are incorrect?
    Solution

    Explanation:

    Let f(x) = x – e-x

    f1(x) = 1 + e-x

    Now,

    From Newton – Raphson method

    \({x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{{f^1}\left( {{x_n}} \right)}}\)

    \( = {x_n} - \frac{{\left[ {{x_n} - {e^{ - xn}}} \right]}}{{\left[ {1 + {e^{ - xn}}} \right]}}\)

    \({x_{n + 1}} = \frac{{\left( {{x_n} + {x_n}{e^{ - xn}} - {x_n} + {e^{ - xn}}} \right)}}{{\left( {1 + {e^{ - xn}}} \right)}}\)

    \(\therefore {x_{n + 1}} = \frac{{\left( {1 + {x_n}} \right){e^{ - {x_n}}}}}{{\left( {1 + {e^{ - {x_n}}}} \right)}}\)

  • Question 10
    2 / -0.33
    If particle moves along a straight line with velocity given by \(\frac{{dy}}{{dt}} = 1 + y\), where ‘y’ is distance travelled, that time taken by a particle to travel distance of 999 metres is
    Solution

    Given:

    \(\frac{{dy}}{{dt}} = \left( {1 + y} \right)\)

    \(\frac{{dy}}{{\left( {1 + y} \right)}} = dt\)

    Integrating both sides and taking limits.

    \(\mathop \smallint \limits_0^{999} \frac{{dy}}{{\left( {1 + y} \right)}} = \mathop \smallint \limits_0^t dt\)

    \(\therefore \left[ {ln\;\left( {1 + y} \right)} \right]_0^{999} = t\)

    In (1000) – In (1) = t

    t = In 1000 = 3 loge 10

  • Question 11
    2 / -0.33

    The partial differential equation has degree and order respectively,

    \(\frac{{{\partial ^2}\phi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\phi }}{{\partial {y^2}}} + \frac{{\partial \phi }}{{\partial x}} + \frac{{\partial \phi }}{{\partial y}} = 0\)

    Solution

    Concept:

    Order: The order of a differential equation is the order of the highest derivative appearing in it.

    Degree: The degree of a differential equation is the power of the highest derivative occurring in it, after the Equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    Calculation:

    By definition of order and degree partial differential equation,

    Order = 2

    Degree = 1

  • Question 12
    2 / -0.33
     The value of \(\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{x}} \right)^x}\)
    Solution

    Putting x = ∞ to the given limiting function, we get:

    \({\left( {1 + \frac{1}{\infty }} \right)^\infty } = {1^\infty }\) 

    1 is one of the indeterminant forms.

    We can modify the given limits as:

    \(\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{x}} \right)^x} = \mathop {\lim }\limits_{x \to \infty } {e^{ln{{\left( {1 + \frac{1}{x}} \right)}^x}}}\) 

    \( = {e^{\mathop {\lim }\limits_{x \to \infty } ln{{\left( {1 + \frac{1}{x}} \right)}^x}}}\) 

    \( = {e^{\mathop {\lim }\limits_{x \to \infty } x\;ln\left( {1 + \frac{1}{x}} \right)}}\) 

    The above can be written as:

    ef(x)    --(1)

    where:

    \(f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } x\left( {1 + \frac{1}{x}} \right)\)       ---(2)

    The above can be written as:

    \(\mathop {\lim }\limits_{x \to \infty } \frac{{ln\left( {1 + \frac{1}{x}} \right)}}{{1/x}}\)  

    Putting on the limit of x = ∞, we get:

    \(\mathop {\lim }\limits_{x \to \infty } \frac{{In\left( {1 + \frac{1}{x}} \right)}}{{1/x}} = \frac{0}{0}\) 

    Applying L-Hospitals rule, we get:

    \( = \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {\frac{1}{{1 + \frac{1}{x}}}} \right)\left( {\frac{{ - 1}}{{{x^2}}}} \right)}}{{ - 1/{x^2}}}\) 

    \( = \mathop {\lim }\limits_{x \to \infty } + \frac{1}{{1 + \frac{1}{x}}} = 1\) 

    Putting this in equation (1), we can write:

    \({e^{\mathop {\lim }\limits_{x \to \infty } x\;In\;\left( {1 + \frac{1}{x}} \right)}} = {e^1}\) 

    \(\therefore \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{x}} \right)^x} = e\;\) 
  • Question 13
    2 / -0.33
    If f(x) = x. |x| then at x = 0 which of the following statements is/are false?
    Solution

    Explanation:

    \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) = 0\;\) 

    ⇒ f(x) is continuous at x = 0

    \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2},\;\;x \ge 0}\\{ - {x^2},\;\;x < 0}\end{array}} \right.\)

    \({f^1}\left( {0 - } \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( h \right)}}{h}\)

    \(= \mathop {\lim }\limits_{h \to 0} \frac{{ - {h^2}}}{h} = 0\)

    \({f^1}\left( {0 + } \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( h \right)}}{h}\)

    \( = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2}}}{h} = 0\)

    f1(0) = 0

    Hence, f(x) is continuous and differentiable at x = 0.
  • Question 14
    2 / -0.33
    Let u(x,y) = x3 + a x2 y + b x y2 + 2y3 be a harmonic function and v(x, y) its harmonic conjugate. If v(0, 0) = 1, then |a + b + v(1, 1)| is equal to _____
    Solution

    Explanation:

    u(x, y) = x3 + ax2y + bxy2 + 2y3

    The given function is harmonic function.

    From CR equations,

    ux = vy , uy = -vx

    ux = 3x2 + 2axy + by2, uy = ax2 + 2bxy + 6y2

    ⇒ vy = 3x2 + 2axy + by2

    Now,

    By integrating on both sides with respect to y.

    \(\Rightarrow \smallint {v_y}dy = \smallint \left( {3{x^2} + 2axy + b{y^2}} \right)dy\)

    ⇒ v = 3x2y + axy2 + \(\frac{{b{y^3}}}{3} + \phi \left( x \right)\)

    ⇒ vx = 6xy + ay2 + ϕ’(x) = -uy

    ⇒ 6xy + ay2 + ϕ’(x) = -ax2 – 2bxy – 6y2

    By comparing on both sides,

    -2b = 6 ⇒ b = -3

    a = -6

    ϕ’(x) = -ax2

    \(\Rightarrow \phi \left( x \right) = - \frac{{a{x^3}}}{3} + C = \frac{{6{x^3}}}{3} + C = 2{x^3} + C\)

    Now, v = 3x2y – 6xy2 – y3 + 2x3 + C

    Given that, v (0, 0) = 1

    ⇒ C = 1

    Now, v = 3x2y – 6xy2 – y3 + 2x3 + 1

    v(1, 1) = 3 – 6 – 1 + 2 – 1 = -1

    |a + b + v (1, 1)| = |- 6 – 3 – 1| = 10
  • Question 15
    2 / -0.33
    Consider \(\frac{{dy}}{{dx}} = x + y\) with y(0) = 0 using Euler’s method with step size of 0.1. The value of y(0.3) is
    Solution

    Concept:

    According Euler’s method

    yn + 1 = yn + h f(xn, yn)

    Calculation:

    Here,

    h = 0.1, y0 = y(0) = 0

    y(0.1) = y0 + 0.1 (0 + 0) = 0

    y(0.2) = y0.1 + h f(x0.1, y0.1)

    y(0.2) = 0 + (0.1) [0.1 + 0]

    y(0.2) = 0.01

    y(0.3) = y(0.2) + f(x0.2, y0.2)

    y(0.3) = 0.01 + 0.1 [0.2 + 0.01]

    y(0.3) = 0.031

  • Question 16
    2 / -0.33
    A fair dice is thrown twice what is the probability that the sum of the numbers on dice is divisible by 2 if 4 appear on one of the dice(answer up to two decimal place)?
    Solution

    Explanation:

    Sample space if 4 appears on one of the dice:

    S = {(1, 4), (2, 4), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 4), (6, 4)}

    the sum of the numbers on dice is divisible by 2

    E = {2, 4), (4, 2), (4, 4), (4, 6), (6, 4)}

    probability that the sum of the numbers on dice is divisible by 2 is

    \(p\left( E \right) = \frac{5}{{11}}\;\;\)

     

    Alternate way:

    Using conditional probability:

    \({\rm{P}}\left( {\frac{{\rm{E}}}{{\rm{S}}}} \right) = \frac{{P\left( {E \cap S} \right)}}{{P\left( S \right)}} = \frac{{\frac{5}{{36}}}}{{\frac{{11}}{{36}}}} = \frac{5}{{11}}\)

  • Question 17
    2 / -0.33
    The minimum value of the function \(f\left( x \right) = \frac{1}{3}x\left( {{x^2} - 3} \right)\) in the interval - 100 ≤ x ≤ 100 occurs at x = __________.
    Solution

    Concept: 

    Maxima and Minima:

    Steps to finding maxima and minima

    • find the stationary point at which f’(x) = 0.
    • Then to find maxima and minima we will check the polarity of the second derivative.

     Case 1. If f”(xo) > 0 then x = xo will be minima where xo is stationary point on f(x).

     Case 2. If f”(xo) < 0 then x = xo will be maxima where xo is stationary point on f(x).

    Calculation:

    Given:

    \(f\left( x \right) = \frac{1}{3}x\left( {{x^2} - 3} \right) = \frac{{{x^3}}}{3} - x\)

    Now, we know that

    For relative minimum and maximum;

    putting \(\frac{{df}}{{dx}} = 0\) and solving for x, we get;

    ⇒ x2 - 1 = 0

    ⇒ x = ±1

    \(\frac{{{d^2}f}}{{d{x^2}}} = 2x\) which gives \(\frac{{{d^2}f}}{{d{x^2}}} = +~2\)  i.e. + Ve for x = +1

    So, x = 1 is a point of relative minimum.

    For the range given the minimum value can also take place to x = -100

    So, checking at x = 1 and x = -100, we get:

    At x = 1,

    \(f\left( 1 \right) = \frac{1}{3}\left( {1 - 3} \right) = - \frac{2}{3}\)

    at, x = -100,

    f(-100) \(= \frac{1}{3}\left( { - 100} \right)\left( {10000 - 3} \right)\)

    f(-100) \(= - \frac{{100}}{3}\left( {9997} \right)\)

    f(-100) = -333233.33

    So, f(-100) is the minimum value in the interval given.

    ∴ the minimum value occurs at x = -100.

  • Question 18
    2 / -0.33

    Consider the differential equation and choose the correct statements

    \({x^2}y'' + 6xy' + 6y = x\)
    Solution

    Explanation:

    Given: \({x^2}{y^{11}} + 6x{y^I} + 6y = x\) 

    Now,

    D(D – 1)y + 6Dy + 6y = et, where \(D = \frac{d}{{dt}}\) 

    Put x = et, t = ln x

    ⇒ (D2 + 5D + 6) y = et

    Auxillary Equation is D2 + 5D + 6 = 0

    Solving the above Equation we get roots as -2, -3

    Now,

    \(CF = {c_1}{e^{ - 2t}} + {c_2}{e^{ - 3t}}\)

    \(CF = \frac{{{c_1}}}{{{x^2}}} + \frac{{{c_2}}}{{{x^3}}}\)

    \(\therefore {\rm{The\;complementary\;function\;is\;}}\left( {C.F.} \right) = \frac{{{c_1}}}{{{x^2}}} + \frac{{{c_2}}}{{{x^3}}}\)

    Now,

    \(P.I = \frac{1}{{\left( {{D^2} + 5D + 6} \right)}}{e^t}\)

    \(P.I. = \frac{{{e^t}}}{{\left( {{1^2} + 5 \times 1 + 6} \right)}} = \frac{{{e^t}}}{{12}}\)

    \(\therefore P.I = \frac{x}{{12}}\)

    \(\therefore {\rm{The\;particular\;integral\;is\;}}\frac{x}{{12}}\)

    Now,

    ∴ The general solution is equal to C.F. + P.I.

    \(\therefore y = \frac{{{c_1}}}{{{x^2}}} + \frac{{{c_2}}}{{{x^3}}} + \frac{x}{{12}}\)

  • Question 19
    2 / -0.33

    For \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {x,\;0 \le t \le 3}\\ {4,\;3 \le t \le 6} \end{array}} \right.\) 

    Find the value of a2 in Fourier series
    Solution

    Concept:

    \({\rm{Fourier\;series\;of\;}}f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty \left( {{a_n}\cos \frac{{n\pi x}}{l} + {b_n}\sin \frac{{n\pi x}}{l}} \right)\)

    \({a_n} = \frac{1}{l}\mathop \smallint \limits_0^{2l} f\left( x \right)\cos \frac{{2\pi x}}{l}dx\)

    Calculation:

    \({a_2} = \frac{1}{3}\mathop \smallint \limits_0^6 f\left( x \right)\cos \frac{{2\pi x}}{3}dx\)

    \({a_2} = \frac{1}{3}\mathop \smallint \limits_0^3 x\cos \frac{{2\pi }}{3}x\;dx + \frac{4}{3}\mathop \smallint \limits_3^6 \cos \frac{{2\pi }}{3}\;x\;dx\)

    \({a_2} = \frac{1}{3}\left[ {x\mathop \smallint \limits_0^3 \cos \frac{{2\pi x}}{3}\;dx - \mathop \smallint \limits_0^3 \left( {\smallint \cos \frac{{2\pi x}}{3}dx} \right)dx} \right] + \frac{4}{3}\mathop \smallint \limits_3^6 \cos \frac{{2\pi x}}{3}dx\)

    \({a_2} = \frac{1}{3}\left[ {\frac{{3x}}{{2\pi }}\left. {\sin \frac{{2\pi x}}{3}} \right|_0^3 + {{\left( {\frac{3}{{2\pi }}} \right)}^2}\left. {\cos \frac{{2\pi x}}{3}} \right|_0^3} \right] + \frac{4}{3} \times \frac{3}{{2\pi }}\left. {\sin \frac{{2\pi x}}{3}} \right|_3^6\)

    \({a_2} = \frac{1}{3}\left[ {\frac{9}{{2\pi }}\sin 2\pi - \sin 0 + \frac{9}{{4{\pi ^2}}}\left\{ {\cos 2\pi - \cos 0} \right\}} \right] + 0\)

    a2 = 0

  • Question 20
    2 / -0.33

    The value of (x + y + z) for the following set of linear equations

    5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5

    Solution

    Explanation:

    Writing the equations in matrix form,

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 5&3&7\\ 3&{26}&2\\ 7&2&{10} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4\\ 9\\ 5 \end{array}} \right]\)

    R1 → 3R1

    R2 → 5R2

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} {15}&9&{21}\\ {15}&{130}&{10}\\ 7&2&{10} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {12}\\ {45}\\ 5 \end{array}} \right]\)

    R2 → R2 – R1

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} {15}&9&{21}\\ 0&{121}&{ - 1}\\ 7&2&{10} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {12}\\ {33}\\ 5 \end{array}} \right]\)

    \({R_1} \to \frac{7}{3}{R_1};{R_2} \to \frac{{{R_2}}}{{11}};{R_3} \to 5{R_3}\)

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} {35}&{21}&{49}\\ 0&{11}&{ - 1}\\ {35}&{10}&{50} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {28}\\ 3\\ {25} \end{array}} \right]\)

    R3 → R3 + R2 – R1; R1 → R1|7

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 5&3&7\\ 0&{11}&{ - 1}\\ 0&0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4\\ 3\\ 0 \end{array}} \right]\)

    Hence, Z = 0

    5x + 3y = 4

    \(11y = 3 \Rightarrow y = \frac{3}{{11}}\)

    \(x = \frac{7}{{11}}\)

    Thus,

    \(\therefore {\rm{x\;}} + {\rm{\;y\;}} + {\rm{\;z\;}} = \frac{{10}}{{11}}\)

  • Question 21
    2 / -0.33

    If S is the surface of the sphere x2 + y2 + z2 = a2, then the value of

    \(\mathop \int\!\!\!\int \limits_S \left( {x + z} \right)dydz + \left( {y + z} \right)dzdx + \left( {x + y} \right)dxdy\) is
    Solution

    Concept:

    Gauss Divergence Theorem:

    The surface integral of the normal component of a vector function \(\vec F\) taken around a closed surface S is equal to the integral of the divergence of \(\vec F\) taken over the volume V enclosed by the surface S. Mathematically;

    \(\oint_{S}^{}\vec{F}.\hat{n}ds=\int_{V}^{}div\vec{F}\;dV\)

    Calculation:

    Given:

    \(\mathop \int\!\!\!\int \limits_S \left( {x + z} \right)dydz + \left( {y + z} \right)dzdx + \left( {x + y} \right)dxdy\) and x2 + y2 + z2 = a2

    \(∴\;{\rm{\vec F}} = \left( {x + z} \right)\hat i + \left( {y + z} \right)\hat j + \left( {x + y} \right)\hat k\)

    From the Gauss divergence theorem;

    \(\oint_{S}^{}\vec{F}.\hat{n}ds=\int_{V}^{}div\vec{F}\;dV\)

    \(∴ div\;\vec F=\nabla .{\rm{\vec F}} \Rightarrow 1 + 1 + 0 = 2\)

    \(\int_{V}^{}\nabla.\vec F\;dV=\int_{V}^{}2\;dV\)

    where \(\int_{V}^{}dV\) represents volume of sphere.

    The equation for the surface of sphere is x2 + y2 + z2 = a2 , ∴  

    ∴ the radius of sphere is a.

    The volume of the sphere \(= \frac{4}{3}\pi {a^3}\)

    \(\Rightarrow \int_{V}^{}2\;dV=2\times \frac{4}{3}\pi {{a}^{3}}=\frac{8}{3}\pi {{a}^{3}}\)

    \(\Rightarrow \oint_{S}^{}\vec{F}.\hat{n}ds= \frac{8}{3}\pi {a^3}\)
  • Question 22
    2 / -0.33
    If the matrix A3 × 3 has three linearly independent eigen vectors, then which of the following statements is true?
    Solution

    Explanation:

    If A3 × 3 has repeated eigen values, then also A can have 3 linearly independent eigen vectors. For example I3 has only one distinct eigen value but there are 3 linearly independent eigen vectors.

    ∴ option (a) need not be true.

    If A is 3 distinct eigen values then A has 3 linearly independent eigen vectors.

    Therefore option (b) need not be true.

    If A is non singular matrix, then A need not contain 3 linearly independent eigen vectors.

    For example a diagonal matrix with 3 distinct eigen values 0, 1, 2 and 3 linearly independent eigen vectors. But the diagonal matrix is singular.

    ∴ option (c) need not be true.
  • Question 23
    2 / -0.33
    The value of \(\mathop \oint \nolimits_C \left( {{x^2} - x{y^3}} \right)dx + \left( {{y^2} - 2xy} \right)dy\), where C, is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2) is ________
    Solution

    Concept:

    By Green’s theorem

    \(\mathop \oint \nolimits_C Mdx + Ndy = \mathop \int\!\!\!\int \limits_R^{} \left[ {\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}}} \right]dx\;dy\)

    Calculation:

    \(\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}} = - 2y + 3x{y^2}\)

    \(\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}} = \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 0}^2 \left[ { - 2y + 3x{y^2}} \right]dydx\)

    \(\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}} = \mathop \smallint \limits_0^2 \left[ { - 2\left( {\frac{{{y^2}}}{2}} \right) + 3x\left( {\frac{{{y^3}}}{3}} \right)} \right]_0^2dx\)

    \(\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}} = \mathop \smallint \limits_0^2 \left( { - 4 + 8x} \right)dx\)

    \(\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}} = \left[ { - 4x + 4{x^2}} \right]_0^2\)

    \(\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}} = - 8 + 16\)

    \(\therefore \frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}} = 8\)

  • Question 24
    2 / -0.33
    In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2 out of 1000 such samples. How many would be expected to contain at least 3 defective parts.
    Solution

    Explanation:

    Given:

    Mean number of defectives = 2 = np

    ⇒ 2 = 20p

    Calculation:

    \({\rm{Hence}},{\rm{\;probability\;of\;defective\;part\;}} = p = \frac{2}{{20}} = 0.1\)

    Probability of non-defective = 0.9

    Now,

    ∴ Probability of at least three defectives in a sample of 20 = 1 – [P(0) + P(1) + P(2)]

    \( = 1 - \left[ {{}_{}^{20}{C_0}{{\left( {0.9} \right)}^{20}} + {}_{}^{20}{C_1}\left( {0.1} \right){{\left( {0.9} \right)}^{19}} + {}_{}^{20}{C_2}{{\left( {0.1} \right)}^2}{{\left( {0.9} \right)}^{18}}} \right]\) 

    = 0.323

    Thus, the number of samples having at least three defective parts out of 1000 samples

    = 1000 × 0.323

    = 323

  • Question 25
    2 / -0.33
    The value of integral \(\mathop \smallint \limits_0^{\frac{\pi }{2}} \sec x\;dx\) is:
    Solution

    \({\rm{let\;I}} = {\rm{\;}}\mathop \smallint \limits_0^{\frac{{\rm{\pi }}}{2}} \sec {\rm{x\;dx}}\)

    multiply and divide by (sec x + tan x)

    \({\rm{I}} = \mathop \smallint \limits_0^{\frac{{\rm{\pi }}}{2}} \sec {\rm{x\;}} \times \frac{{\sec {\rm{x}} + \tan {\rm{x}}}}{{{\rm{secx}} + \tan {\rm{x}}}}{\rm{\;dx\;}}\)

    \({\rm{I}} = \mathop \smallint \limits_0^{\frac{{\rm{\pi }}}{2}} \frac{{{{\sec }^2}x + {\rm{secx}}.\tan {\rm{x}}}}{{{\rm{secx}} + \tan {\rm{x}}}}{\rm{\;dx}}\)

    Let t= sec x + tan x

    Differentiation on both sides w.r.t x

    dt = (sec x tan x + sec2 x) dx

    Substitute these values in above equation,

    \({\rm{I}} = {\rm{\;}}\mathop \smallint \nolimits_0^{\frac{{\rm{\pi }}}{{2{\rm{\;}}}}} \frac{{{\rm{dt}}}}{{\rm{t}}} = {\log _{\rm{e}}}{\rm{t\;}}\)

    \({\rm{I}} = \left[ {{{\log }_{\rm{e}}}\left( {\sec {\rm{x}} + \tan {\rm{x}}} \right)} \right]_0^{\frac{\pi }{2}}\)

    \({\rm{I}} = \left[ {{{\log }_{\rm{e}}}\left( {\sec \frac{\pi }{2} + \tan \frac{\pi }{2}} \right) - \;{{\log }_e}\left( {\sec 0 - \tan 0} \right)} \right]_{}^{}\)

    \({\rm{I}} = \left[ {{{\log }_{\rm{e}}}\left( {\sec \frac{\pi }{2} + \tan \frac{\pi }{2}} \right) - \;{{\log }_e}\left( {1\;} \right)} \right]_{}^{}\)

    As, it does not produce any exact result, because tan 90 and sec 90 are ND (not defined). This is a divergent

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now