Concept
Note
i) Gradient (∇) converts scalar function into vector function
ii) Divergence (∇.\({\rm{\bar F}}\)) Converts vector function to scalar (Dot product)
iii) Curl (∇ × \({\rm{\bar F}}\)) converts vector function to vector function (Cross product)
Calculation
Given, \(f = {x^2} - {y^2} + 2{z^2}\)
Point P is (1, 2, 3), point Q is (5, 0, 4)
Line \(\overline {PQ} = \left( {5 - 1} \right)\bar i + \left( {0 - 2} \right)\bar j + \left( {4 - 3} \right)\bar k\)
\(\overline {PQ} = 4\bar i - 2\bar j + 1\bar k\)
Gradient of f (x, y, z) is given by ∇f
\(\nabla f = \;\frac{{\partial f}}{{\partial x}}\bar i + \;\frac{{\partial f}}{{\partial y}}\bar j + \frac{{\partial f}}{{\partial z}}\bar k\)
\(= \;\frac{{\partial \left( {{x^2} - {y^2} + 2{z^2}} \right)}}{{\partial x}}\;\bar i + \;\frac{{\partial \left( {{x^2} - {y^2} + 2{z^2}} \right)}}{{\partial y}}\;\bar j + \frac{{\partial \left( {{x^2} - {y^2} + 2{z^2}} \right)}}{{\partial z}}\overline {\;k} \)
\(= 2x\;\overline {\;i} - 2y\overline {\;j} + 4z\overline {\;k}\)
Directional derivative at point P (1, 2, 3) is
\({\left( {\nabla f} \right)_p} = 2 \times \left( 1 \right)\overline {\;i} - 2 \times \left( 2 \right)\bar j + 4 \times \left( 3 \right)\;\bar k\)
\({\left( {\nabla f} \right)_p} = 2\overline {\;i} - 4\;\bar j + 12\;\bar k\;\;\)
i) Maximum value of the directional derivative is
\( = \left| {\nabla {f_p}} \right| = \sqrt {{2^2} + {{\left( { - 4} \right)}^2} + {{\left( {12} \right)}^2}} \)
= 12.80
ii) Directional derivative of f (x, y, z) at P along the line \(\overline {PQ} \) is
\(D.D = {\left( {\nabla f} \right)_p}.\frac{{\overline {PQ} }}{{\left| {\overline {PQ} } \right|}}\)
\( = \left( {2\;\bar i - 4\;\bar j + 12\;\bar k} \right)\;.\frac{{4i - 2j + 1k}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {1^2}} }}\)
As it is dot product
\(= \frac{{8 + 8 + 12}}{{\sqrt {21} }}\)
\(= \frac{{28}}{{\sqrt {21} }}\)