Self Studies

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    [1, 1, 2] is an Eigen vector of the matrix, \(A = \left[ {\begin{array}{*{20}{c}} 3&1&{ - 1}\\ 2&2&{ - 1}\\ 2&2&0 \end{array}} \right]\) corresponding to the Eigen value x. Then value of x is _______
    Solution

    Concept:

    If x is Eigen vector matrix corresponding to the matrix A & λ is the Eigen value then AX = λX

    Calculation:

    \(AX = \left[ {\begin{array}{*{20}{c}} 3&1&{ - 1}\\ 2&2&{ - 1}\\ 2&2&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2\\ 2\\ 4 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 2 \end{array}} \right]\)

    \(\lambda X = \lambda \left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 2 \end{array}} \right]\)

    \(AX = \lambda X \Rightarrow 2\left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 2 \end{array}} \right] = \lambda \left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 2 \end{array}} \right] \Rightarrow \lambda = 2\)

    According to question, λ = x

    Hence [λ = 2 or λ = x = 2]

  • Question 2
    2 / -0.33
    If \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {-4 +x^2}&{x \le 3}\\ {-2x + a}&{x > 3} \end{array}} \right.\) is a continuous function for all real values of x, then a is equal to ________.
    Solution

    Concept: 

    A function f(x) is said to be continuous at a point x = a, in its domain if \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{a}} \right)\) exists or its graph is a single unbroken curve.

    f(x) is Continuous at x = a ⇔ \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right)\)

    Calculation:

    For the function to be continuous,

    \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = f\left( 3 \right) = \mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\)

    \(\mathop {\lim }\limits_{x \to {3^ - }} \left( {-4 + x^2} \right) = \mathop {\lim }\limits_{x \to 3} \left( {-4 +x^2} \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {-2x +a} \right)\)

    ⇒ - 4 + 32 = - 2 × 3 + a ⇒ 5 = - 6 + a

    ⇒ a = 11

  • Question 3
    2 / -0.33
    A third-degree polynomial f(x) has values 2, 5, 16, 44 at x = 0, 1, 2 and 3 respectively. Estimate the value of \(\int\limits_0^3 {f(x)dx} \) by applying Simpson rule
    Solution

    Concept:

    \(\begin{array}{l} \int\limits_0^3 {f(x)dx} = \frac{h}{3}\left[ {\left( {\mathop y\nolimits_0 + \mathop y\nolimits_n } \right) + 4(\mathop y\nolimits_1 + \mathop y\nolimits_3 + ......) + 2(\mathop y\nolimits_2 + \mathop y\nolimits_4 + ......)} \right]\\ \end{array}\)

    Calculation:

    x0123
    f(x)2= y05 = y116 = y244 = y3

     

    \(\begin{array}{l} \int\limits_0^3 {f(x)dx} = \frac{h}{3}\left[ {\left( {\mathop y\nolimits_0 + \mathop y\nolimits_3 } \right) + 4(\mathop y\nolimits_1 ) + 2(\mathop y\nolimits_2 )} \right] = \frac{1}{3}\left[ {\left( {44 + 2} \right) + 4(5) + 2(16)} \right] = 32.67\\ \end{array}\)

     

  • Question 4
    2 / -0.33
    The value of the following definite integral is \(\displaystyle\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \rm \dfrac{sin^3 \ x \ e^{-x^2}}{x^4}dx\)
    Solution

    Concept:

    If f(x)  is even function then f(-x) = f(x)

    If f(x)  is odd function then f(-x) = -f(x)

    Properties of definite integral

    If f(x)  is even function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 2\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)

    If f(x)  is odd function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} =0\)

    Calculation:

    Let I = \(\displaystyle\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \rm \dfrac{sin^3 \ x \ e^{-x^2}}{x^4}dx\)

    Let f(x) = \( \dfrac{sin^3 \ x \ e^{-x^2}}{x^4}\)

    Replaced x by -x, 

    ⇒ f(-x) = \(\rm \dfrac{sin^3 \ (-x) \ e^{-{(-x)^2}}}{(-x)^4}\)

    As we know sin (-θ) = - sin θ

    \( \dfrac{-sin^3 \ x \ e^{-x^2}}{x^4}\)

    ⇒ f(-x) = -f(x)      

    So, f(x) is odd function

    Therefore, I = 0     

  • Question 5
    2 / -0.33

    Consider the following differential equation:

    \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\)

    Which of the following is/are true regarding the above differential equation?

    Solution

    The order of differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative accruing in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\)

    Highest derivative in the given differential equation is 4

    Hence order is 4.

    To find the degrees, we need to change the differential equation in to form which is free from radicals.

    \({\left[ {{{\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)}^{\frac{1}{2}}}} \right]^6} = {\left[ {{{\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]}^{\frac{1}{3}}}} \right]^6}\)

    \(\Rightarrow {\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^3} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^2}\)

    Now the differential equation is free from radicals

    Degree of highest derivative = 3

    Order and degree of the given differential equation = 4 and 3

  • Question 6
    2 / -0.33
    Evaluate \(\mathop \smallint \limits_c \frac{{{z^2}\;-\;z\;+\;1}}{{(2z\;-\;1)}{(z\;-\;2)}}dz\) where c is the circle |z| = 1.
    Solution

    Concept:

    If f(z) is analytic within & on a closed curve C and “a” is a point inside the curve C then,

    \(2π if\left( a \right) = \mathop \oint \nolimits_C \frac{{f\left( z \right)dz}}{{(z\;-\;a)}}\); we consider f(z)/(z-a) to be analytic at all points within C except at z = a.

    If multiple singularities occur then we use this;

    \(2π i{\{f'\}^{n}}\left( a \right) = \mathop \oint \nolimits_C \frac{{f\left( z \right)\;dz}}{{{{\left( {z\;-\;a} \right)}^{n+1}}}}\)        ……(1)

    Calculation:

    Given:

    \(\mathop \smallint \limits_c \frac{{{z^2}\;-\;z\;+\;1}}{{(2z\;-\;1)}{(z\;-\;2)}}dz\) and |z| = 1

    The point of singularities can be calculated by putting the denominator equal to zero.

    (2z - 1)(z - 2) = 0

    ∴ z = 1/2 and 2

    |z| = 1 represents circle with unit radius, ∴ z = 1/2 lies inside and z = 2 lies outside the circle. 

    Rearranging the integrand;

    \(\mathop \smallint \limits_c \frac{{{z^2}\;-\;z\;+\;1}}{{(2z\;-\;1)}{(z\;-\;2)}}dz=\int_{c}^{}\frac{\frac{z^2\;-\;z\;+\;1}{2(z\;-\;2)}}{{(z\;-\;\frac{1}{2})}}dz\)

    \(\therefore f(z)=\frac{z^2\;-\;z\;+\;1}{2(z\;-\;2)}\)

     

    Integral ⇒ 2πi f(1/2) = - 0.5πi

  • Question 7
    2 / -0.33
    Laplace transform of t cos (at) is
    Solution

    Concept:

    Laplace transform of f(t):

    L {f(t)} = F (s)

    Then, Multiplication by tn:           

    L {tn f(t)} = (-1)n\(\frac{{{d^n}}}{{d{s^n}}}\) [ F(s)]

    Now,

    L (cos at) = \(\frac{{\rm{s}}}{{{{\rm{s}}^2} + {{\rm{a}}^2}}}\)

    L {t cos at} = (-1) \(\frac{{\rm{d}}}{{{\rm{ds}}}}\left( {\frac{{\rm{s}}}{{{{\rm{s}}^2} + {{\rm{a}}^2}}}} \right)\)

    \(\frac{{{\rm{s\;}}\left( {2{\rm{s}}} \right) - \left( 1 \right)\left( {{{\rm{s}}^2} + {{\rm{a}}^2}} \right)}}{{{{\left( {{{\rm{s}}^2} + {{\rm{a}}^2}} \right)}^2}}}\)

    \(\frac{{{{\rm{s}}^2} - {{\rm{a}}^2}}}{{{{\left( {{{\rm{s}}^2} + {{\rm{a}}^2}} \right)}^2}}}\)
  • Question 8
    2 / -0.33

    Which is/are true on the interval [4, 5].of the below given function?

    f(x) = 3x3 – 40.5x2 + 180x + 7

    Solution

    f(x) = 3x3 – 40.5x2 + 180x + 7

    f’(x) = 9x2 – 81x + 180 = 0

    put f’(x) = 0 to find the point at which maximum and minimum value exists

    9x2 – 81x + 180 = 0

    x2 – 9x + 20 = 0

    (x – 5)(x – 4 ) = 0

    ∴ x = 5 or x =4

    Interval [4, 5]

    f'’(x) = 2x – 9

    put x = 4

    f’’(x) = -1 < 0 (maximum value might exist)

    put x = 5

    f’’(x) = 1 > 0 (minimum value might exist)

    Also check border values:

    value of x

    f(x)

     

    4

     3x3 – 40.5x2 + 180x + 7

    = 271

    Maximum value

    5

     3x3 – 40.5x2 + 180x + 7

    = 269.5

    Minimum value


    The minimum value is 269.5

  • Question 9
    2 / -0.33

    If a discrete random variable X has the following probability distribution

    X

    2

    -1

    p(x)

    \(\frac{1}{3}\)

    \(\frac{2}{3}\)


    Evaluate the Standard deviation

    Solution

    Concept:

    \(S.D = \sqrt {E\left( {{X^2}} \right) - {{\left\{ {E\left( X \right)} \right\}}^2}} \)

    Calculation:

    \(E\left( X \right) = 2\left( {\frac{1}{3}} \right) + \left( { - 1} \right)\left( {\frac{2}{3}} \right)\)

    E(X) = 0

    Now,

    \(E\left( {{X^2}} \right) = \sum x_i^2P\left( {{x_i}} \right)\)

    \(E\left( {{X^2}} \right) = {2^2}\left( {\frac{1}{3}} \right) + {\left( { - 1} \right)^2}\left( {\frac{2}{3}} \right)\)

    E(X2) = 2

    We know that,

    \(S.D\;\left( \sigma \right) = \sqrt {E\left( {{X^2}} \right) - {{\left\{ {E\left( X \right)} \right\}}^2}} \) 

    \(\therefore S.D\;\left( \sigma \right) = \sqrt {{2^2} - 2} \)

    σ = √2 = 1.414

  • Question 10
    2 / -0.33

    The probability that a person  stopping at a gas station will ask to have his tyres checked is 0.12, the probability that he will ask to have his oil checked is 0.29 and the probability that he will ask to have them both checked is 0.07. The probability that a person who has his tyres checked will also have oil checked is

    Solution

    Concept:

    Conditional probability:

    It gives the probability of happening of any event if the other has already occurred.

    \({\rm{P}}\left( {\frac{{{{\rm{E}}_1}}}{{{{\rm{E}}_2}}}} \right) = {\rm{Probability\;of\;getting\;the\;event\;}}{{\rm{E}}_1}{\rm{\;when\;}}{{\rm{E}}_2}{\rm{is\;already\;occured}}.\)

    \(P\left( {\frac{{{E_1}}}{{{E_2}}}} \right) = \frac{{P\left( {{E_1} \cap {E_2}} \right)}}{{P\left( {{E_2}} \right)}}\)

    Calculation:

    Given:

    P (E1) = Probability of stopping at the gas station and ask for tyre checked = 0.12

    P (E2) = Probability of stopping at the gas station and ask for oil checked = 0.29

    P (E1∩ E2) = Probability of both checked = 0.07

    \({\rm{P}}\left( {\frac{{{{\rm{E}}_2}}}{{{{\rm{E}}_1}}}} \right) = {\rm{Probability\;of\;person\;who\;has\;his\;tyre\;checked\;will\;also\;have\;oil\;checked}}\)   

    ∵ \(P\left( {\frac{{{E_2}}}{{{E_1}}}} \right) = \frac{{P\left( {{E_1} \cap {E_2}} \right)}}{{P\left( {{E_1}} \right)}}\)

    ∴ \(P\left( {\frac{{{E_2}}}{{{E_1}}}} \right) = \frac{{0.07}}{{0.12}} = 0.58\)

  • Question 11
    2 / -0.33
    The differential equation satisfying y = \(A{e^{3x}} + B{e^{2x}}\) is 
    Solution

    y = \(A{e^{3x}} + B{e^{2x}}\)

    \(\frac{{dy}}{{dx}} = 3A{e^{3x}} + 2B{e^{2x}}\)

    \(\frac{{{d^2}y}}{{d{x^2}}} = 9A{e^{3x}} + 4B{e^{2x}}\)

    Now, according to option (a)

    \(\frac{{{d^2}y}}{{d{x^2}}} + 5\frac{{dy}}{{dx}} - 6y = \;9A{e^{3x}} + 4B{e^{2x}} + 15A{e^{3x}} + 10B{e^{2x}} - {e^{3x}} + 6B{e^{2x}} \ne 0\)

    Hence, option (a) is not correct.

    Now, according to option (b)

    \(\frac{{{d^2}y}}{{d{x^2}}} - 5\frac{{dy}}{{dx}} + 6y = \;9A{e^{3x}} + 4B{e^{2x}} - 15A{e^{3x}} - 10B{e^{2x}} + {e^{3x}} + 6B{e^{2x}} = 0\)

    So, option (b) is the correct option.

  • Question 12
    2 / -0.33
    The function f(x) = ex – 1 is to be solved using Newton-Raphson method. If the initial value of x0 is taken as 1.0, then the absolute error observed at 2nd iteration is _______.
    Solution

    Concept:

    According to Newton-Raphson Method

    \({X_{n + 1}} = {X_n} - \frac{{f\left( {{X_n}} \right)}}{{f'\left( {{X_n}} \right)}}\)

    Calculation:

    f(x) = ex – 1

    f’(x) = ex

    x0 = 1

    Iteration 1:

    At x0 = 1, f(x) = 1.718

    f'(x) = 2.718

    \({x_1} = {x_0} - \frac{{f\left( {{x_0}} \right)}}{{f'\left( {{x_0}} \right)}}\)

    \( = 1 - \frac{{1.718}}{{2.718}} = 0.3678\)

    Iteration 1:

    At x1 = 0.3678, f(x) = 0.4445

    f'(x) = 1.4445

    \({x_1} = {x_0} - \frac{{f\left( {{x_0}} \right)}}{{f'\left( {{x_0}} \right)}}\)

    \( = 0.3678 - \frac{{0.4447}}{{1.4447}} = 0.06005\)

    By inspection, the actual solution for the given equation is, x = 0

    Therefore, the error = 0.06005

  • Question 13
    2 / -0.33

    \(\left[ {\begin{array}{*{20}{c}} 4&5&x\\ 5&6&y\\ 6&k&z \end{array}} \right]\)

    For the given matrix, if x, y, z are in AP with a common difference d and the rank of the matrix is 2, then which of the following results is/are always correct?

    Solution

    Since x, y, z are in A.P with common difference ‘d’, we can write:

    x = x,

    y = x + d,

    z = x + 2d

    The given matrix can now be written as:

    \(\left[ A \right] = \left[ {\begin{array}{*{20}{c}} 4&5&x\\ 5&6&{x + d}\\ 6&k&{x + 2d} \end{array}} \right]\)

    Applying R2 → R2 – R1, we get the equivalent matrix as:

    \(\left[ A \right] \approx \left[ {\begin{array}{*{20}{c}} 4&5&x\\ 1&1&d\\ 1&{k - 6}&d \end{array}} \right]\)

    Applying R3 → R3 – R2, we get:

    \(\left[ A \right] \approx \left[ {\begin{array}{*{20}{c}} 4&5&x\\ 1&1&d\\ 0&{k - 7}&0 \end{array}} \right]\)

    For the rank of the matrix to be 2, the determinant of the above must be 0, i.e.

    |A| = 0

    Solving for the determinant, we get:

    (k - 7) (4d - x) = 0

    k = 7 or x = 4d

    ∴ For k = 7, and x = 4d
  • Question 14
    2 / -0.33
    If \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {1 + x}&{if\;x < 0}\\ {\left( {1 - x} \right)\left( {px + q} \right)}&{if\;x \ge 0} \end{array}} \right.\) satisfies the assumptions of Rolle’s Theorem in the interval [-1, 1], the ordered pair (p, q) is
    Solution

    Rolle’s Theorem:

    Suppose f(x) is continuous on [a, b] differentiable on (a, b) and f(a) = f(b). Then there exists some point c ϵ [a, b] such that f'(c) = 0.

    Calculation:

    The given function is continuous and differentiable at x = 0

    \( \Rightarrow \begin{array}{*{20}{c}} {lt}\\ {x \to {0^ - }} \end{array}f\left( x \right) = \begin{array}{*{20}{c}} {lt}\\ {x \to {0^ + }} \end{array}f\left( x \right)\)

    \( \Rightarrow \begin{array}{*{20}{c}} {lt}\\ {x \to 0} \end{array}f\left( {1 + x} \right) = \begin{array}{*{20}{c}} {lt}\\ {x \to 0} \end{array}\left( {1 - x} \right)\left( {px + q} \right)\)

    ⇒ 1 = q

    The function to be differentiable at x = 0

    f'(x = 0) = f'(x = 0+)

    ⇒ 1 = (-1) (px + q) + (1 – x) p

    At, x = 0

    ⇒ 1 = -q + p ⇒ p = 1 + q = 2

    (p, q) = (2, 1)
  • Question 15
    2 / -0.33
    For the differential equation \(\frac{dy}{dx}={{x}^{2}}y-1,~y\left( 0 \right)=1,\) the value of y at x = 0.1, using the Taylors series method, is given by:
    Solution

    Concept:

    Taylor series Method: Consider the first-order differential equation as:

    \({y}'=\frac{dy}{dx}=f\left( x,y \right)~and~y\left( {{x}_{0}} \right)={{y}_{0}}\)

    Taylor’s series state that:

    \(y\left( x \right)=y\left( {{x}_{0}} \right)+\frac{\left( x-{{x}_{0}} \right)}{1!}{y}'\left( {{x}_{0}} \right)+\frac{{{\left( x-{{x}_{0}} \right)}^{2}}}{2!}{y}''\left( {{x}_{0}} \right)+\ldots \)

    Where, \({y}'\left( {{x}_{0}} \right)={{\left( \frac{dy}{dx} \right)}_{at~{{x}_{0}}}}\)

    \(and~{y}''\left( {{x}_{0}} \right)={{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}_{at~{{x}_{0}}}}\)

    Application:

    Given,

    \({y}'=\frac{dy}{dx}={{x}^{2}}y-1~and~y\left( 0 \right)=1\)

    As we know, y(x0) = y0

    ∴ x0 = 0 and y0 = 1

    Now,

    y’ = x2 y - 1

    \(y_{0}^{'}={{\left( {{x}_{0}} \right)}^{2}}y+0-1\)

    \(\Rightarrow y_{0}^{'}=-1\)

    Now, y’’ = x2 y’ + y.2x

    \(i.e.~y_{0}^{''}=0\)

    y’’’ = x2y’’ + y’ 2x + 2y + 2xy

    \(y_{0}^{'''}~=~2\)

    Putting these values and x = 0.1 in equation 1, we get:

    \(y\left( x \right)=1+\frac{\left( x-0 \right)}{1!}\left( -1 \right)+\frac{{{\left( x-0 \right)}^{2}}}{2!}\times 0+\frac{{{\left( x-0 \right)}^{3}}}{3!}\times 2+\ldots ~\)

    \(y\left( x \right)=1-x+0+\frac{{{x}^{3}}}{3}\)

    ∴ Neglecting the higher-order teams, we get:

    y(0.1) ≃ 0.9
  • Question 16
    2 / -0.33
    \(\smallint \frac{1}{{\left( {x + 1} \right)\sqrt {1 - 2x - {x^2}} }}dx\) is equal to
    Solution

    \({\rm{I\;}} = {\rm{\;}}\smallint \frac{1}{{\left( {x + 1} \right)\sqrt {1 - 2x - {x^2}} }}dx\)

    Put \(x + 1\; = \;\frac{1}{t}\; \Rightarrow \;dx\; = \;\frac{{ - 1}}{{{t^2}}}dt\)

    \(\begin{array}{l} \Rightarrow \;I\; = \;\smallint \frac{{\frac{{ - 1}}{{{t^2}}}dt}}{{\frac{1}{t}\sqrt {1 - 2\left( {\frac{1}{t} - 1} \right) - {{\left( {\frac{1}{t} - 1} \right)}^2}} }}\\ = \; - \smallint \frac{{dt}}{{\sqrt {2{t^2} - 1} }}\end{array}\)

    \(\begin{array}{l}\; = \; - \frac{1}{{\sqrt 2 }}\smallint \frac{{dt}}{{\sqrt {{t^2} - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}} }}\\ = \; - \frac{1}{{\sqrt 2 }}\cos {h^{ - 1}}\left( {\frac{t}{{y\sqrt 2 }}} \right)\;\\ = \; - \frac{1}{{\sqrt 2 }}\cos {h^{ - 1}}\left( {\frac{{\sqrt 2 }}{{x + 1}}} \right)\end{array}\)

  • Question 17
    2 / -0.33
    Consider the hemisphere x2 + y2 + (z - 2)2 = 9, 2 ≤ z ≤ 5 and the vector field F = xi + yj + (z - 2)k The surface integral ∬ (F ⋅ n) dS, evaluated over the hemisphere with n denoting the unit outward normal vector, is
    Solution

    The unit vector normal to the surface will be given by:

    \(n = \frac{{\nabla \phi }}{{\left| {\nabla \phi } \right|}}\)

    ϕ = x2 + y2 + (z - 2)2 = 9

    ∇ϕ = 2xi + 2yj + 2(z - 2) k

    \(n = \frac{{xi + 2yj + \left( {z - 2} \right)k}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}} }}\)

    \(F \cdot n = \left[ {xi + yj + \left( {z - 2} \right)k} \right]\frac{{\left[ {xi + yj + \left( {z - 2} \right)} \right]k}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}} }}\)

    \(F \cdot n = \frac{{{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - 2} \right)}^2}} }}\)

    \(= \frac{9}{{\sqrt 9 }} = \frac{9}{3} = 3\)

    Thus:

    \(\int\!\!\!\int \left( {F \cdot n} \right)dxdy=\int\!\!\!\int 3dxdy \)

    \(= 3\int\!\!\!\int dxdy\)

    3 × Area = 3 × π (3)2

    = 27 π  

  • Question 18
    2 / -0.33
    In the Laurent series expansion of \(f\left( z \right)=\frac{1}{z-1}-\frac{1}{z-2}\) valid in the region |z| > 2, then the coefficient of 1/z2 is:
    Solution

    Concept:

    Laurentz Series is obtained by the arrangement and manipulation of standard series or expansions, i.e.

    (1 - x)-1 = 1 + x + x2 + x3 + …… |x| < 1

    (1 + x)-1 = 1 – x + x2 – x3 + ….. |x| < 1

    (1 - x)-2 = 1 + 2x + 3x2 + ….. |x| < 1

    (1 + x)-2 1 – 2x + 3x2 – 4x2 + …. |x| < 1

    Observe that in all the expansions; |x| should be less than 1.

     ∴ We need to manipulate the variable to satisfy the above condition.

    Application:

    Given region |z| < 2

    \(\frac{2}{\left| z \right|}<1\) 

    \(\frac{1}{\left| z \right|}<\frac{1}{2}\) 

    This can be interpreted as \(\frac{1}{\left| z \right|}<1\) 

    \(f\left( z \right)=\frac{1}{z-1}-\frac{1}{z-2}\) 

    \(f\left( z \right)=\frac{1}{z}\left[ \frac{1}{1-\frac{1}{z}}-\frac{1}{1-\frac{2}{z}} \right]\) 

    \(Since~\frac{1}{1-\frac{1}{z}}={{\left( 1-\frac{1}{z} \right)}^{-1}}\) 

    \(\left| \frac{1}{z} \right|<1\Rightarrow {{\left( 1-\frac{1}{z} \right)}^{-1}}=1+\frac{1}{z}+\frac{1}{{{z}^{2}}}+\ldots \) 

    Similarly, we can write:

    \(\frac{1}{1-\frac{2}{z}}={{\left( 1-\frac{2}{z} \right)}^{-1}}\) 

    \(\left| \frac{2}{z} \right|<1\Rightarrow {{\left( 1-\frac{2}{z} \right)}^{-1}}=1+\frac{2}{z}+{{\left( \frac{2}{z} \right)}^{2}}+\ldots \) 

    \(\therefore f\left( z \right)=\frac{1}{2}\left[ \left[ 1+\frac{1}{z}+\frac{1}{{{z}^{2}}}+\ldots \right]-\left[ 1+\frac{2}{z}+{{\left( \frac{2}{z} \right)}^{2}}+\ldots \right] \right]\) 

    \(=\left[ \left[ \frac{1}{2}+\frac{1}{{{z}^{2}}}+\frac{1}{{{z}^{3}}}+\ldots \right]\left[ \frac{1}{z}+\frac{2}{{{z}^{2}}}+\frac{4}{{{z}^{2}}}+\ldots \right] \right]\) 

    Coefficient of \(\frac{1}{{{z}^{2}}}=1-2=~-1\)
  • Question 19
    2 / -0.33
    A die is tossed 180 times. Using normal distribution find the probability that the face 4 will turn up atleast 35 times (Area under the normal curve between Z = 0 and Z = 1 is 0.3413)
    Solution

    Explanation:

    Mean \( = \mu = np = \left( {180} \right) \cdot \frac{1}{6} = 30\) 

    Standard deviation \( = \sigma = \sqrt {npq} = 5\) 

    Let x = number of times the face 4 will turn up

    \(z = \frac{{x - \mu }}{\sigma }\)

    \(\therefore z = \frac{{x - 30}}{5}\)

    Now,

    When x = 35, z = 1

    Required probability = P(z ≥ 1)

    Required probability = 1 – P(z < 1)

    Required probability = 1 – (0.5 + P(0 < z < 1))

    Required probability = 1 – (0.5 + 0.3413)

    The required probability = 0.1587

  • Question 20
    2 / -0.33
     Evaluate \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \) where \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\) and C is the boundary of the part of the paraboid where z2 = 64 – x2 – y2 which lies above the xy-plane and C is oriented counter clockwise when viewed from above.
    Solution

    Concept:

    By stokes theorem,

    \(\mathop \oint \limits_C^\; F.dr = \mathop \int\!\!\!\int \limits_S^\; Curl\;F.Nds\)

    Calculation:

    \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\)

     

    \(\nabla \times \vec F = \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ x&y&{3\left( {{x^2} + {y^2}} \right)} \end{array}} \right|\)

    = i (6y) – j(6x) = 6y î - 6x ĵ

    S: x2 + y2 + z2 – 64 = 0

    \(ds = + 2x\hat i + 2y\hat j + 2z\hat k\)

    \(\left( {\nabla \times \vec F} \right) \cdot ds = \left( {6y\hat i - 6x\hat j} \right) \cdot \left( {2x\hat i + 2y\hat j + 2z\hat k} \right)\)

    = 12xy – 12xy + 0 = 0

    \( \Rightarrow \mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} = 0\)

  • Question 21
    2 / -0.33
    If function \(f = {x^2} - {y^2} + 2{z^2}\), point P is (1, 2, 3) and point Q is (5, 0, 4)
    Solution

    Concept

    Note

    i) Gradient (∇) converts scalar function into vector function

    ii) Divergence (∇.\({\rm{\bar F}}\)) Converts vector function to scalar (Dot product)

    iii) Curl (∇ × \({\rm{\bar F}}\)) converts vector function to vector function (Cross product)

    Calculation

    Given, \(f = {x^2} - {y^2} + 2{z^2}\) 

    Point P is (1, 2, 3), point Q is (5, 0, 4)

    Line \(\overline {PQ} = \left( {5 - 1} \right)\bar i + \left( {0 - 2} \right)\bar j + \left( {4 - 3} \right)\bar k\)

    \(\overline {PQ} = 4\bar i - 2\bar j + 1\bar k\)

    Gradient of f (x, y, z) is given by ∇f

    \(\nabla f = \;\frac{{\partial f}}{{\partial x}}\bar i + \;\frac{{\partial f}}{{\partial y}}\bar j + \frac{{\partial f}}{{\partial z}}\bar k\)

    \(= \;\frac{{\partial \left( {{x^2} - {y^2} + 2{z^2}} \right)}}{{\partial x}}\;\bar i + \;\frac{{\partial \left( {{x^2} - {y^2} + 2{z^2}} \right)}}{{\partial y}}\;\bar j + \frac{{\partial \left( {{x^2} - {y^2} + 2{z^2}} \right)}}{{\partial z}}\overline {\;k} \)

    \(= 2x\;\overline {\;i} - 2y\overline {\;j} + 4z\overline {\;k}\)

    Directional derivative at point P (1, 2, 3) is

    \({\left( {\nabla f} \right)_p} = 2 \times \left( 1 \right)\overline {\;i} - 2 \times \left( 2 \right)\bar j + 4 \times \left( 3 \right)\;\bar k\)

    \({\left( {\nabla f} \right)_p} = 2\overline {\;i} - 4\;\bar j + 12\;\bar k\;\;\)

    i) Maximum value of the directional derivative is

    \( = \left| {\nabla {f_p}} \right| = \sqrt {{2^2} + {{\left( { - 4} \right)}^2} + {{\left( {12} \right)}^2}} \)

    = 12.80

    ii) Directional derivative of f (x, y, z) at P along the line \(\overline {PQ} \) is

    \(D.D = {\left( {\nabla f} \right)_p}.\frac{{\overline {PQ} }}{{\left| {\overline {PQ} } \right|}}\)

    \( = \left( {2\;\bar i - 4\;\bar j + 12\;\bar k} \right)\;.\frac{{4i - 2j + 1k}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {1^2}} }}\)

    As it is dot product

    \(= \frac{{8 + 8 + 12}}{{\sqrt {21} }}\)

    \(= \frac{{28}}{{\sqrt {21} }}\)

  • Question 22
    2 / -0.33
    Evaluate \(\mathop {\lim }\limits_{x \to 0} {\left[ {\tan \left( {\frac{\pi }{4} + x} \right)} \right]^{1/x}}\)
    Solution

    Let \(y = \mathop {\lim }\limits_{x \to 0} {\left[ {\tan \left( {\frac{\pi }{4} + x} \right)} \right]^{1/x}}\) 

    It is an indeterminate form.

    Thus using log-concept,

    log y \( = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\tan \left( {\frac{\pi }{4} + x} \right)}}{x}} \right]\) 

    Applying L-H Rule, 

    \(\log y = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\frac{1}{{\tan \left( {\frac{\pi }{4} + x} \right)}} \times {{\sec }^2}\left( {\frac{\pi }{4} + x} \right)}}{1}} \right]\) = 2

    ⇒ Iog y = 2 ⇒ y = e2
  • Question 23
    2 / -0.33

    Using the Fourier expansion of \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{0\; - \pi \le x \le 0}\\{\sin x\;0 \le x \le \pi \;}\end{array}} \right.\) 

    Find the sum of series,

    \(\frac{1}{{1.3}} - \frac{1}{{3.5}} + \frac{1}{{5.7}} - \frac{1}{{7.9}} + \ldots \infty \) (Correct up to 3 decimal).
    Solution

    Concept:

    Fourier series of f(x)

    \(f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos \frac{{n\pi x}}{L} + \mathop \sum \limits_{n = 1}^\infty {n_n}\sin \frac{{n\pi x}}{l}\)

    \({a_0} = \frac{1}{l}\mathop \smallint \limits_{ - L}^L f\left( x \right)dx,\;{a_n} = \frac{1}{l}\mathop \smallint \limits_{ - l}^l f\left( x \right)\cos \frac{{n\pi x}}{L}\;dx,\;{b_n} = \frac{1}{l}\;\mathop \smallint \limits_{ - L}^L f\left( x \right)\sin \frac{{n\pi x}}{L}dx\)

    Calculation:

    \({a_0} = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi f\left( x \right)dx = \frac{1}{\pi }\;\mathop \smallint \limits_0^\pi \sin x\;dx = \frac{2}{\pi }\)

    \({a_n} = \frac{1}{\pi }\mathop \smallint \limits_0^\pi \sin x\cos nx\;dx = \frac{1}{{2\pi }}\mathop \smallint \limits_0^\pi [\sin \left( {n + 1} \right)x - \sin \left( {n - 1} \right)x]\;dx\)

    \({a_n} = \frac{1}{{2\pi }}\left[ { - \frac{{\cos \left( {n + 1} \right)x}}{{n + 1}} + \frac{{\cos \left( {n - 1} \right)x}}{{n - 1}}} \right]_0^\pi \)

    = 0, n is odd and \(\frac{{ - 2}}{{\pi \left( {{n^2} - 1} \right)}}\), n is even

    Now,

    \({b_n} = \frac{1}{\pi }\mathop \smallint \limits_0^\pi \sin x\sin n\;x\;dx\)

    \({b_n} = \frac{1}{{2\pi }}\mathop \smallint \limits_0^\pi \left[ {\cos \left( {n - 1} \right)x - \cos \left( {n + 1} \right)x} \right]dx\)

    \({b_n} = \frac{1}{{2\pi }}\left[ {\frac{{\sin \left( {n - 1} \right)x}}{{n - 1}} - \frac{{\sin \left( {n + 1} \right)x}}{{n + 1}}} \right]_0^\pi = 0\left( {n \ne 1} \right)\)

    When n = 1

    \({b_1} = \frac{1}{2}\)

    \(\therefore f\left( x \right) = \frac{1}{\pi } - \frac{2}{\pi }\left[ {\frac{{\cos 2x}}{{{2^2} - 1}} + \frac{{\cos 4x}}{{{4^2} - 1}} + \ldots } \right] + \frac{1}{2}\sin x\)

    \({\rm{Put\;}}x = \frac{\pi }{2}\)

    \( \Rightarrow 1 = \frac{1}{\pi } - \frac{2}{\pi }\left( { - \frac{1}{{1.3}} + \frac{1}{{3.5}} - \frac{1}{{5.7}} + \ldots \infty } \right) + \frac{1}{2}\)

    \(\therefore \frac{1}{{1.3}} - \frac{1}{{3.5}} + \frac{1}{{5.7}} - \ldots \infty = \frac{1}{4}\left( {\pi - 2} \right) = 0.285\)

  • Question 24
    2 / -0.33

    Let X be a Discrete random variable following binominal probability distribution \({\left( {q + p} \right)^n} = {\left( {\frac{1}{3} + \frac{2}{3}} \right)^{10}}\).

    The sum of the standard deviation and the variance of the above distribution is ________.

    Solution

    Concept:

    Binomial Probability Distribution:

    Let X is the discrete Random variable such that its p.m.f is defined as

    \(P\left( {X = r\;success} \right) = {\;^n}{C_r}{p^r}{q^{n - r}} \approx {\left( {q + p} \right)^n}\)

    Where,

    p = probability of success & q = probability of failure & p + q = 1

    then X is said to follow Binomial distribution.

    1) Parameter/statistical Attributes: Those unknowns which are necessary to evaluate complete distribution are called parameters.

    2) Mean : E(x) = ∑ xipi = np

    3) Variance: E(x2) – (E(x))2 = npq

    4) Standard Deviation: \(\sqrt {npq}\)

    Calculation:

    Comparing \({\left( {q + p} \right)^n}\;with\;{\left( {\frac{1}{3} + \frac{2}{3}} \right)^{10}}\)

    \(q = \frac{1}{3},\;p = \frac{2}{3},n = 10\)

    ∴ Standard Deviation \(= + \sqrt {npq}\) \(= \sqrt {\frac{1}{3} \times \frac{2}{3} \times 10} \approx 1.49\)

    Variance \(= npq = \frac{1}{3} \times \frac{2}{3} \times 10 = \frac{{20}}{9}\)

    ∴ Required sum \(= 1.49 + \frac{{20}}{9} = 3.712\;\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now