Concept:
Power (P) = \(\frac{{2\pi NT}}{{60}}\)
T → Torgue (kN – m)
P → Power (kw)
Also,
\(\frac{{\rm{\tau }}}{{\left( {\left( {{{\rm{D}}_{\rm{o}}}} \right)/2} \right)}} = \frac{{\rm{T}}}{{{{\rm{I}}_{\rm{P}}}}}\)
τ → allowable shear stress in the shaft material, DO → External diamer of shaft
IP → Polar moment of Inertia of Shaft, Angular Velocity ω = \(\frac{{2\pi N}}{{60}}\), N → Rotation of Shaft (rpm)
ω → angular velocity (red/sec)
Calculations:
Given:
DO = 100mm
τ = 70 N/mm2
\({{\rm{I}}_{\rm{P}}} = \frac{{\rm{\pi }}}{{32}}\left( {{\rm{D}}_O^4 - {\rm{D}}_{in}^4} \right)\)
\({{\rm{I}}_{\rm{P}}} = \frac{{\rm{\pi }}}{{32}}\left( {{{100}^4} - {{50}^4}} \right)\)
IP = 9.20 × 106 mm4
Now,
\(\frac{{\rm{\tau }}}{{\left( {\left( {{{\rm{D}}_{\rm{o}}}} \right)/2} \right)}} = \frac{{\rm{T}}}{{{{\rm{I}}_{\rm{P}}}}}\)
\(\frac{{70}}{{\left( {\frac{{100}}{2}} \right)}} = \frac{T}{{9.20 \times {{10}^6}}}\)
T = 12880 N – m
∴ T = 12.88 kN – m
Now,
P = \(\frac{{2{\rm{\pi NT}}}}{{60}}\)
4000 = P = \(\frac{{2{\rm{\pi }} \times {\rm{N}} \times 12.88}}{{60}}\)
N = 2965.62 rpm
ω = \(\frac{{2{\rm{\pi N}}}}{{60}}\)
ω = \(\frac{{2{\rm{\;}} \times {\rm{\;\pi \;}} \times {\rm{\;}}2965.62}}{{60}}\)
∴ ω = 310.56 rad/sec