Self Studies

Strength of Materials Test 2

Result Self Studies

Strength of Materials Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33

    The principal stresses at a point in a stressed material are σ1 = 200 N/mm2, σ2 = 150 N/mm2, and σ3 = 200 N/mm2.

    E = 210 kN/mm2 and μ = 0.3. The volumetric strain will be
    Solution

    Concept:

    Volumetric strain \(= \frac{{{\sigma _x} + {\sigma _y} + {\sigma _z}}}{E}\left( {1 - 2\mu } \right)\)

    For uniaxial, volumetric strain \(= \frac{\sigma }{E}\left( {1 - 2\mu } \right) = e\left( {1 - 2\mu } \right)\)

    Calculation:

    Given that:

    σ1 = 200 MPa ; σ2 = 150 MPa, σ3 = 200 MPa

    E = 200 kN/mm2 and μ  = 0.3

    Volumetric strain, \({\varepsilon _v} = \left( {\frac{{{\sigma _1}\; + \;{\sigma _2}\; + \;{\sigma _3}}}{E}} \right)\left( {1 - 2\mu } \right)\)

    \({\varepsilon _v} = \left( {\frac{{200\; + \;150\; + \;200}}{{210 \times {{10}^3}}}} \right)\left( {1 - 2 \times 0.3} \right)\)

    \(= \left( {\frac{{2.62}}{{{{10}^3}}}} \right)\left( {0.4} \right) = 1.05 \times {10^{ - 3}}\)

    ∴ εv = 1.05 × 10-3

  • Question 2
    2 / -0.33

    Which of the following statements can be true about the shape of the elastic curve during the deflection of the beam?

    Solution

    Concept:

    \(R = \;\frac{{EI}}{M}\;\; - - - \left( 1 \right)\)

    Here, R = Radius of curvature of the beam

    E = Elastic modulus, I = Area moment of inertia, M = Bending moment

    We also know,

    \({\rm{Shear\;force\;}}\left( {{\rm{SF}}} \right) = \;\frac{{dM\;}}{{dx\;}}\;\;\; - - - \;\left( 2 \right)\)

    Option (a):

    Let M = 0, then SF = 0, from equation (2)

    From (1), R = Infinity, which implies shape is a straight line.

    Option (b):

    Let M = Constant, then SF = 0, from equation (2) i.e

    From (1), R = Constant, which implies shape is a circular arc.

    Option (c):

    Let M = Variable w.r.t x, then SF exists according to (2)

    Since R is varying, the shape is parabolic.

    Option (d):

    When bending Moment (M) is variable the shear force will exist and hence this option is incorrect.

  • Question 3
    2 / -0.33
    Find the maximum bending stress (in MPa) induced on an aluminium wire with E = 70 GPa and diameter equal to 1 mm when wound on a drum of diameter 1 m.
    Solution

    Explanation:

    From bending equation

    \(\frac{σ }{y} = \frac{E}{R}\)

    So, here

     \({σ _{max}} = \frac{{E{y_{max}}}}{{\left( {R + \frac{t}{2}} \right)}}\)

    \({\rm{E}} = {\rm{\;}}70{\rm{\;GPa}},{\rm{\;\;}}{y_{max}} = \frac{t}{2} = \frac{1}{2}\;mm\)

    \({σ _{max}} = \frac{{70\; \times \;{{10}^3}\; \times \;\left( {0.5} \right)}}{{500\; + \;0.5}}\)

    σmax = 69.99 MPa

  • Question 4
    2 / -0.33
    Elastic stress of a mild steel specimen in the tensile test is found to be 250 N/mm2 and neck formation takes place at 800 N/mm2. Elastic strain measured by strain gauge is 0.12%. Modulus of elasticity of mild steel is (GPa) ______.
    Solution

    Concept:

    \({\rm{Modulus\;of\;Elasticity}}\left( {\rm{E}} \right){\rm{\;}} = \;\frac{{Yield\;stress\left( {{\sigma _y}} \right)}}{{Yeild\;strain\left( {{ \in _y}} \right)}}\)

    Calculation:

    Given:

    σe = 250 N/mm2

    e = 0.12%

    For mild steel material, elastic stress and yield stress are close to each other and can be taken as equal. Similarly, elastic strain and yield strain are equal.

    σe = σy = 250 N/mm2

    e = ∈y = 0.12%

    \(E = \frac{{{\sigma _y}}}{{{ \in _y}}} = \frac{{250}}{{0.0012}} = 2.0833 \times {10^5}N/m{m^2}\)

    E = 208.33 GPa

  • Question 5
    2 / -0.33

    A welded steel cylindrical drum made of a 10 mm thick plate has an internal diameter of 1.20 m. Find the change in diameter that would be caused by internal pressure of 1.5 MPa. Assume that Poisson's ratio is 0.30 and E = 200 GPa (longitudinal stress, σ= pD/4t circumferential stress, σx = pD/2t). 

    Solution

    Concept:

    Hoop strain in case of cylinder is given by:

    \({\epsilon _{\rm{H}}} = \frac{{P \times {d}}}{{4 \times t \times E}} \times \left( {2 - \mu } \right)\)

    Calculation:

    Given:

    t = 10 mm = 10 × 10-3 m, Internal diameter (d) = 1.20 m, Internal pressure (P) = 1.5 MPa = 1.5 × 106 Pa, Poisson’s ratio (μ) = 0.30

    Modulus of elasticity (E) = 200 GPa = 200 × 109 Pa

    Hoop strain is:

    \({\epsilon_H} = \frac{{{\rm{\Delta }}d}}{d} = \frac{{P \times {d}}}{{4 \times t \times E}} \times \left( {2 - \mu } \right)\)

    \({\rm{\Delta }}d = \frac{{P \times {d^2}}}{{4 \times t \times E}} \times \left( {2 - \mu } \right)\)

    \( {\rm{\Delta }}d= \frac{{1.5 \times {{10}^6} \times {{1.2}^2} \times \left( {2 - 0.3} \right)}}{{4 \times 10 \times {{10}^{ - 3}} \times 200 \times {{10}^9}}} = 4.59 \times {10^{ - 4}}\;m = 0.459\;mm\)

  • Question 6
    2 / -0.33
    A steel rod of 50 mm diameter is 4m long. In a test, a pull of 80 kN is suddenly applied to it. Take E = 200 GPa. Elongation due to suddenly applied load is _____mm.
    Solution

    Concept:

    As load is suddenly applied, the maximum stress produced is double the stress due to gradual loading.

    \(Maximum\;stress = \;\sigma = \frac{{2P}}{A}\)

    Calculation:

    \(Area = \;\frac{\pi }{4} \times {50^2} = 1963.5\;m{m^2}\)

    \(Maximum\;stress = \;\sigma = \frac{{2 \times 80000\left( N \right)}}{{1963.5\;(m{m^2})}} = 81.487\;\left( {\frac{N}{{m{m^2}}}} \right)\)

    Maximum instantaneous elongation is given by,

    \(\delta L = \;\frac{\sigma }{E} \times L\)

    \(\delta L = \;\frac{{81.487\left( {\frac{N}{{m{m^2}}}} \right)}}{{200 \times 1000\left( {\frac{N}{{m{m^2}}}} \right)}} \times 4000\left( {mm} \right)\)

    ∴ δL = 1.63 mm
  • Question 7
    2 / -0.33
    A steel ball of diameter 7 mm is used in the Brinell Hardness test to find the BHN of a specimen. If at a load of 240 kg the indentation diameter was found to be 3 mm, then calculate the BHN of the specimen.
    Solution

    Concept:

    \({\rm{Brinell\;hardness\;number\;}}\left( {{\rm{BHN}}} \right){\rm{\;}} = {\rm{\;}}\frac{{2P}}{{\pi D\left( {D - \;\sqrt {{D^2}\; - {d^2}\;} } \right)}}\)

    P = load in kg

    D = steel ball diameter

    d = indentation diameter

    Calculation:

    Given:

    P = 240 kg

    D = 7 mm

    d = 3 mm

    Now, substituting the values in the formula

    \({\rm{Brinell\;hardness\;number\;}}\left( {{\rm{BHN}}} \right){\rm{\;}} = {\rm{\;}}\frac{{2P}}{{\pi D\left( {D - \;\sqrt {{D^2}\; - {d^2}\;} } \right)}}\)

    \(\therefore {\rm{Brinell\;hardness\;number\;}}\left( {{\rm{BHN}}} \right){\rm{}} = {\rm{}}\frac{{2\; \times \;240}}{{\pi\; \times \;7\left( {7\; - \;\sqrt {{7^2}\; - \;{3^2}\;} } \right)}}\)

    \(\therefore {\rm{Brinell\;hardness\;number\;}}\left( {{\rm{BHN}}} \right){\rm{}} = {\rm{}}\frac{{480}}{{\pi\; \times \;7\left( {7\; - \;\sqrt {49 - 9\;} } \right)}}\)

    \(\therefore {\rm{Brinell\;hardness\;number\;}}\left( {{\rm{BHN}}} \right){\rm{}} = \frac{{480}}{{\pi\; \times \;7\; \times \;\left( {7 - \;\sqrt {40} } \right)}}\)

    ∴ BHN = 32.31

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now