Concept:
The relation between hydrodynamic boundary layer thickness (δ) and thermal boundary layer thickness (δT) is given as
\(\frac{\delta }{{{\delta _T}\;}} = {\left( {Pr} \right)^{1/3}}\)
The relation between Nusselt number and Prandtl number for laminar flow over a flat plate is
Nu = F (Re, Pr)
For constant temperature, boundary condition
Nu = 0.332 (Re)1/2 (Pr)1/3
For constant heat flux boundary condition
Nu = 0.453 (Re)1/2 (Pr)1/3
Calculation:
\(\frac{{{{\left( {Nu} \right)}_A}}}{{{{\left( {Nu} \right)}_B}}} = \frac{{\left( {Re} \right)_A^{1/2}\;\left( {Pr} \right)_A^{1/3\;}}}{{\left( {Re} \right)_B^{1/2}\left( {Pr} \right)_B^{1/2}}}\)
\(\frac{{{{\left( {Nu} \right)}_A}}}{{{{\left( {Nu} \right)}_B}}} = \frac{{\left( {Pr} \right)_A^{1/3}}}{{\left( {Pr} \right)_B^{1/3}}}\)
\({\left( {Nu} \right)_B} = \frac{{\left( {Pr} \right)_B^{1/3}{{\left( {Nu} \right)}_A}}}{{\left( {Pr} \right)_A^{1/3}}}\)
\({\left( {Nu} \right)_B} = \frac{{\left( {Pr} \right)_B^{1/3}{{\left( {Nu} \right)}_A}}}{{\left( {Pr} \right)_A^{1/3}}}\)
Now,
\({\left( {Pr} \right)_A} = \left( {\frac{\delta }{{\delta T}}} \right)_A^3 = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\)
\({\left( {Pr} \right)_B} = \left( {\frac{\delta }{{{\delta _T}}}} \right)_B^3 = {\left( 2 \right)^3}\)
\(\therefore {\left( {Pr} \right)_B} = 8\)
∴ (Pr)B = 8
\({\left( {Nu} \right)_B} = \frac{{{{\left( 8 \right)}^{\frac{1}{3}}}}}{{{{\left( {\frac{1}{8}} \right)}^{\frac{1}{3}}}}} \times 35\)
∴ (Nu)B = 140