Concept:
FT is the force transmitted to the foundation. The disturbing force is F. The ratio of FT to F is called transmissibility.
\(T.R = \frac{{{F_T}}}{F} = \frac{{\sqrt {1 + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}{{\sqrt {{{\left( {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right)}^2} + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}\)
The steady state amplitude for the system:
\(A = \frac{{\frac{F}{k}}}{{\sqrt {{{\left( {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right)}^2} + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}\)
Calculation:
Given: m = 10 kg, k = 4000 N/m, C = 40 Ns/m, F = 60 N
ω = 40 rad/sec
\({\omega _n} = \sqrt {\frac{k}{m}} = \sqrt {\frac{{4000}}{{10}}} = 20\;rad/sec\)
Frequency Ratio:
\(r = \frac{\omega }{{{\omega _n}}} = \frac{{40}}{{20}} = 2\)
The critical damping coefficient:
\({c_c} = 2m\;{\omega _n} = 2\sqrt {mk} = 2\sqrt {10 \times 4000} = 400\;N.s/m\)
The damping factor, ξ:
\(\xi = \frac{C}{{{C_c}}} = \frac{{40}}{{400}} = 0.1\)
Transmissibility:
\(T.R = \frac{{{F_T}}}{F} = \frac{{\sqrt {1 + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}{{\sqrt {{{\left( {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right)}^2} + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}\)
\(T = \frac{{\sqrt {1 + {{\left( {2 \times 0.1 \times 2} \right)}^2}} }}{{\sqrt {{{\left( {1 - {2^2}} \right)}^2} + \left( {2 \times 0.1 \times 2} \right)^2} }} = \frac{{1.07703}}{{3.02654}} = 0.3559\)
The amplitude of the force transmitted:
FT = (T.R) F = (0.3379) × 60
∴ FT = 21.35 N