Concept:
Enthalpy of moist air,
h = 1.005 td + ω(2500 + 1.88 td) (td → dry bulb temperature in °C)
Heat transfer rate, Q = ṁa (h2 – h1)
Calculation:
Given:
T1 = 15°C = 288 K, T2 = 30°C = 303 K, ϕ1 = 0.8, V̇ = 2.5 m3/s, Pt = 101.3 kPa,
\({P_{{s_1}}} = 1.6\;kPa,\;{P_{{s_2}}} = 4.3\;kPa\)
Now,
\({\phi _1} = 0.8 = \frac{{{P_{{v_1}}}}}{{{P_{{s_1}}}}}\)
\(0.8 = \frac{{{P_{{v_1}}}}}{{1.6}}\)
\(\therefore {P_{{v_1}}} = 1.28\;kPa\)
Now,
\({\rm{Specific\;humidity\;}}\left( {{\omega _1}} \right) = \frac{{0.622\;\;{P_{{v_1}}}}}{{{P_t} - {P_{{v_1}}}}}\)
\({\omega _1} = \frac{{0.622 \times 1.28}}{{101.3 - 1.28}}\)
∴ ω1 = 7.96 × 10-3 kg/kg of dry air
As no moisture is added or removed,
∴ ω1 = ω2 = 7.96 × 10-3
Now,
Enthalpy of moist air of entry,
h1 = (1.005 × 15) + 7.96 × 10-3 × (2500 + 1.88 × 15)
h1 = 35.199 kJ/kg
h2 = (1.005 × 30) + 7.96 × 10-3 × (2500 + 1.88 × 30)
∴ h2 = 50.498 kJ/kg
Now,
Mass flow rate of dry air,
\({\dot m_a} = \frac{{{P_a}\dot V}}{{{R_a} \cdot {T_1}}} = \frac{{\left( {101.3 - 1.28} \right)5}}{{0.287 \times 288}}\)
ṁa = 3.025 kg/s
Now,
Heat transfer rate = ṁa (h2 – h1)
Heat transfer rate = 3.025 × (50.498 – 35.199)
Heat transfer rate = 46.279 kJ/s
∴ Heat transfer rate = 46.28 kW