Concept:
Irreversibility = Wactual - Wmin
Calculation:
For the case of minimum work
(Δs)univ = 0
\({s_2} - {s_1} = 0 \Rightarrow {C_p}\;\ln\;\frac{{{T_2}}}{{{T_1}}} - R\;\ln\frac{{{p_2}}}{{{p_1}}} = 0\)
∴\(\ln \frac{{{T_2}}}{{300}} - 0.287\ln 4 = 0\)
∴ T2 = 446.59 K
Now,
Given:
flow rate (ṁ) = 1 kg/s
Inlet temperature (T1) = 300 K, Outlet temperature (T2) = 446.59 K (calculated above)
Inlet velocity (V1) = 400 m/s, Outlet velocity (V2) = 900 m/s
Using Steady flow energy equation (SFEE)
\(W + \dot m{h_1} + \frac{{\dot m{V^2_1}\;}}{{2000}} = \dot m{h_2} + \frac{{\dot mV_2^2}}{{2000}} + Q\)
\(W = \dot m{h_2} + \frac{{\dot m{V^2_2}\;}}{{2000}} - \dot m{h_1} - \frac{{\dot mV_1^2}}{{2000}} + Q\)
\(W = \left( {446.59 - 300} \right) + \frac{1}{{2000}}\left( {900 - 400} \right)\) (∵ h2 - h1 = Cp (T2 - T1))
∴ Wmin = 146.84 kW
Now,
In actual condition.
Given:
Inlet temperature (T1) = 300 K, Actual Outlet temperature (T2) = 500 K
Inlet velocity (V1)= 400 m/s, Outlet velocity (V2)= 900 m/s
Using Steady flow energy equation (SFEE)
\(W + \dot mh + \frac{{\dot mV_1^2}}{{2000}} = \dot m{h_2} + \frac{{\dot mV_2^2}}{{2000}}\)
\(W = \dot m{h_2} + \frac{{\dot m{V^2_2}\;}}{{2000}} - \dot m{h_1} - \frac{{\dot mV_1^2}}{{2000}} + Q\)
\(W = \left( {500 - 300} \right) + \frac{1}{{2000}}\left( {900 - 400} \right)\) (∵ h2 - h1 = Cp (T2 - T1))
\(W = 1\left( {500 - 300} \right) + 0.25 \)
∴ Wactual = 200.25 kW
Now,
Irreversibility = Wactual - Wmin
∴ Irreversibility = 200.25 - 146.84
∴ Irreversibility = 53.41 kW