Self Studies
Selfstudy
Selfstudy

Thermodynamics Test - 5

Result Self Studies

Thermodynamics Test - 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which among the following is correct about irreversibility?
    Solution

    Concept:

    Reversible work and irreversibility

    • Reversible work (Wrev) is the maximum amount of useful work that can be produced as a system undergoes a process between the specified initial and final states.
    • For a process that require work, reversible work represents the minimum amount of work necessary to carry out that process.
    • The difference between the reversible work and the useful work (W) is due to irreversibility.
    • The irreversibility is equivalent to the exergy destroyed.
    • For a total reversible process, the actual and reversible work terms are identical, and thus the irreversibility is zero.
    • Irreversibility represents the energy that could have been converted to work but could not be converted because of the effects like friction losses, heat transfer through the finite temperature difference, etc.
    • If Heat transfer takes place from a reservoir which is at the almost same temperature to the system then sgen is zero. If we are using infinite reservoirs then it will always be the case as written above, therefore overall sgen will be zero and the whole process will be reversible.

    The irreversibility (I) of the process is defined as

    I = Wr – W

    Where,

    Wr = Reversible work

    W = Actual work

    It can also be expressed as:

    I = T0ΔSuniverse

    Where,

    T0 = surrounding temperature

    ΔSuniverse = entropy change of the universe 

  • Question 2
    1 / -0
    The change in entropy for a polytropic process \({\rm{p}}{{\rm{v}}^{\rm{n}}}\) is given by:
    Solution

    Concept:

    For a polytropic process,

    \(\frac{{{P_1}}}{{{P_2}}} = {\left( {\frac{{{V_2}}}{{{V_1}}}} \right)^n} = {\left( {\frac{{{T_1}}}{{{T_2}}}} \right)^{\frac{n}{{n - 1}}}}\)

    \({s_2} - {s_1} = {c_v}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}} + R\ln \frac{{{{\rm{V}}_2}}}{{{{\rm{V}}_1}}} = {c_v}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}} + \;R\ln {\left( {\frac{{{T_1}}}{{{T_2}}}} \right)^{\frac{1}{{n - 1}}}} = {c_v}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}} + \frac{R}{{n - 1}}\ln \frac{{{T_1}}}{{{T_2}}}\)

    \({s_2} - {s_1} = {c_v}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}} - \frac{R}{{n - 1}}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}} = {c_v}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}} - \frac{{{c_v}\left( {\gamma - 1} \right)}}{{n - 1}}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}} = {c_v}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}}\left( {1 - \frac{{\left( {\gamma - 1} \right)}}{{n - 1}}} \right)\)

    \({s_2} - {s_1} = {c_v}\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}}\left( {\frac{{n - \gamma }}{{n - 1}}} \right)\)

    The entropy change is given by:

    \(\Delta {\rm{S}} = {{\rm{c}}_{\rm{v}}}{\rm{\;}}\left[ {\frac{{{\rm{n}} - {\rm{\gamma }}}}{{{\rm{n}} - 1}}} \right]\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}}\)

    \(\Delta {\rm{S}} = \frac{{{\rm{n}} - {\rm{\gamma }}}}{{\left( {{\rm{n}} - 1} \right)\left( {\gamma - 1} \right)}}R\ln \frac{{{{\rm{T}}_2}}}{{{{\rm{T}}_1}}}\)

  • Question 3
    1 / -0
    In a reversible setup an engine takes heat from the source of 1000 K and 500 K amounting 50 kW and 30 kW respectively and it rejects 40 kW of heat to temperature T, The value of T is _______
    Solution

    Concept:

    According to Clausius Inequality:

    \(\oint \frac{{\delta Q }}{T} = 0\)

    Calculation:

    Given:

    T1 = 500 K, T2 = 1000 K

    Q1 = 50 kW, Q2 = 30 kW, Q3 = 40 kW

    Now,

    \(\frac{{{Q_1}}}{{{T_1}}} + \frac{{{Q_2}}}{{{T_2}}} - \frac{{{Q_3}}}{T} = 0\)

    \(\frac{{50}}{{1000}} + \frac{{30}}{{500}} - \frac{{40}}{T} = 0\)

    ∴ T = 363.63 K
  • Question 4
    1 / -0
    Available energy of a system is a function of
    Solution

    Concept:

    Available energy:

    • The portion of the energy supplied as heat which can be converted into work by a reversible engine is called available energy.
    • It is also called as exergy.
    • It is a property that determines the useful work potential at a given amount of energy at some specified state. It is also known as availability.
    • Since work is a function of the initial state, the path of the process, and the final state we can say that work is a path function. It is not a property of the system but exergy is a property of a system and surroundings or we can say that it is the function of the total energy of the system.
    • The work potential of the energy contained in the system at a specified state is maximum work that can be obtained from the system.
    • It is a property of the system and surrounding combined means that we can improve the efficiency of the system itself or the other way round is that we can change the surrounding condition to increase the exergy.
  • Question 5
    1 / -0
    In an adiabatic chamber, two blocks of the same mass and heat capacity comes in contact with each other. One is at a temperature of 500 K and the other one is at 1000 K. Find the value of entropy change if the system attains thermodynamic equilibrium. Take (mass = 2 kg, Cp = 1 kJ/kgK)
    Solution

    Concept:

    \({\left( {{\rm{\Delta }}s} \right)_{total}} = {\left( {{\rm{\Delta }}s} \right)_{block\;1}} + {\left( {{\rm{\Delta }}s} \right)_{block\;2}}\)

    Calculation:

    Now,

    Heat lost by block 1 = Heat gained by block 2

    ∴ \(mC_p\left( {{T_1} - {T_f}} \right) = mC_p\;\left({{T_f} - {T_2}} \right) \)

    ∴ \({T_f} = \frac{{{T_1} + {T_2}}}{2} = 750 K\)

    Now,

    \({\left( {{\rm{\Delta }}s} \right)_{total}} = {\left( {{\rm{\Delta }}s} \right)_{block\;1}} + {\left( {{\rm{\Delta }}s} \right)_{block\;2}}\)

    \({\left( {{\rm{\Delta }}s} \right)_{total}} = mC_p\;\ln\;\left( {\frac{{{T_f}}}{{{T_1}}}} \right) + mC_p\;\ln\;\left( {\frac{{{T_f}}}{{{T_2}}}} \right)\)

    \({\left( {{\bf{\Delta }}s} \right)_{total}} = mC_p\left( {\ln\;\left( {\frac{{{T_f}}}{{{T_1}}}} \right) + \ln\left( {\frac{{{T_f}}}{{{T_2}}}} \right)} \right)\)

    \({\left( {{\rm{\Delta }}s} \right)_{total}} = 2 \times 1 \times \left[ {\ln\;\left( {\frac{{{{750}^2}}}{{500 \times 1000}}} \right)} \right]\)

    \(∴ {\left( {{\rm{\Delta }}s} \right)_{Total}} = 0.2355\frac{{kJ}}{{K}}\)
  • Question 6
    1 / -0
    Air is allowed to flow through a control volume such that its temperature changes from 500 K to 400 K and pressure varies from 5 atm to 1 atm Assuming entry and exit velocity as 10 m/s and 5 m/s. The change in available energy is_______ kJ/kg if the surrounding temperature is 27°C.
    Solution

    Concept:

    Using the concept of availability function of a flowing gas

    \({\rm{Change\;in\;A}}.{\rm{E}} = {\phi _1} - {\phi _2}\)

    And,

    \({\phi _1} = {h_1} - {T_0}{s_1} + \frac{{V_1^2}}{{2000}}\)

    \({\phi _2} = {h_2} - {T_0}{s_2} + \frac{{V_2^2}}{{2000}}\)

    Calculation:

    Now,

    \({\rm{Change\;in\;A}}.{\rm{E}} = {\phi _1} - {\phi _2}\)

    \({\rm{Change\;in\;A}}.{\rm{E}} = {h_1} - {h_2} + {T_0}\left( {{s_2} - {s_1}} \right) + \;\frac{{V_1^2 - V_2^2}}{{2000}}\)

    \(\therefore {\rm{Change\;in\;A}}.{\rm{E}} = {C_p}\left( {{T_2} - {T_1}} \right) + 300\;\left( {{C_p}\;\ln\;\left( {\frac{{{T_2}}}{{{T_1}}}} \right) - 0.287\;\ln\;\left( {\frac{{{P_2}}}{{{P_1}}}} \right)} \right) + \frac{{V_1^2 - V_2^2}}{{2000}}\)

    \(\therefore {\rm{Change\;in\;A}}.{\rm{E}} = 1\left( {500 - 400} \right) + 300\;\left( {1\;\ln\;\left( {\frac{{400}}{{500}}} \right) - 0.287\;\ln\;\left( {\frac{1}{5}} \right)} \right) + \frac{{\left( {100 - 25} \right)}}{{2000}}\)

    Change in A.E = 171.667 kJ/kg

  • Question 7
    1 / -0
    Air with the flow rate of 1 kg/s is allowed to pass through a screw compressor with the inlet temperature as 300 K and an actual outlet temperature of 500 K with a pressure ratio = 4. Considering inlet velocity as 20 m/s and outlet velocity as 30 m/s and assuming no heat interaction with the surrounding, the value of irreversibility will be ______ kW
    Solution

    Concept:

    Irreversibility = Wactual - Wmin

    Calculation:

    For the case of minimum work

    (Δs)univ = 0

    \({s_2} - {s_1} = 0 \Rightarrow {C_p}\;\ln\;\frac{{{T_2}}}{{{T_1}}} - R\;\ln\frac{{{p_2}}}{{{p_1}}} = 0\)

    \(\ln \frac{{{T_2}}}{{300}} - 0.287\ln 4 = 0\)

    T= 446.59 K

    Now,

    Given:

    flow rate (ṁ) = 1 kg/s

    Inlet temperature (T1) = 300 K, Outlet temperature (T2= 446.59 K (calculated above)

    Inlet velocity (V1= 400 m/s, Outlet velocity (V2) = 900 m/s

    Using Steady flow energy equation (SFEE)

    \(W + \dot m{h_1} + \frac{{\dot m{V^2_1}\;}}{{2000}} = \dot m{h_2} + \frac{{\dot mV_2^2}}{{2000}} + Q\)

    \(W = \dot m{h_2} + \frac{{\dot m{V^2_2}\;}}{{2000}} - \dot m{h_1} - \frac{{\dot mV_1^2}}{{2000}} + Q\)

    \(W = \left( {446.59 - 300} \right) + \frac{1}{{2000}}\left( {900 - 400} \right)\)   (∵ h2 - h1 = Cp (T2 - T1))

    Wmin = 146.84 kW

    Now,

    In actual condition.

    Given:

    Inlet temperature (T1)  = 300 K, Actual Outlet temperature (T2= 500 K

    Inlet velocity (V1)= 400 m/s, Outlet velocity (V2)= 900 m/s

    Using Steady flow energy equation (SFEE)

    \(W + \dot mh + \frac{{\dot mV_1^2}}{{2000}} = \dot m{h_2} + \frac{{\dot mV_2^2}}{{2000}}\)

    \(W = \dot m{h_2} + \frac{{\dot m{V^2_2}\;}}{{2000}} - \dot m{h_1} - \frac{{\dot mV_1^2}}{{2000}} + Q\)

    \(W = \left( {500 - 300} \right) + \frac{1}{{2000}}\left( {900 - 400} \right)\)   (∵ h2 - h1 = Cp (T2 - T1))

    \(W = 1\left( {500 - 300} \right) + 0.25 \)

    ∴ Wactual = 200.25 kW

    Now,

    Irreversibility = Wactual - Wmin

    ∴ Irreversibility = 200.25 - 146.84

    ∴ Irreversibility = 53.41 kW

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now