Explanation:
Given:
(σy)min = 20 N/mm2, (σy)max = 60 N/mm2, (σx)min = 40 N/mm2, (σx)max = 90 N/mm2
Mean and amplitude stress in x-direction
\({\sigma _{xm}} = \frac{{{{\left( {{\sigma _x}} \right)}_{max}} + {{\left( {{\sigma _x}} \right)}_{min}}}}{2} = \frac{{90 + 40}}{2} = 65\;N/m{m^2}\)
\({\sigma _{xa}} = \frac{{{{\left( {{\sigma _x}} \right)}_{max}} - {{\left( {{\sigma _x}} \right)}_{min}}}}{2} = \frac{{90 - 40}}{2} = 25\;N/m{m^2}\)
Similarly in y-direction,
\({\sigma _{ym}} = \frac{{{{\left( {{\sigma _y}} \right)}_{max}} + {{\left( {{\sigma _y}} \right)}_{min}}}}{2} = \frac{{60 + 20}}{2} = 40\;N/m{m^2}\)
\({\sigma _{ya}} = \frac{{{{\left( {{\sigma _y}} \right)}_{max}} - {{\left( {{\sigma _y}} \right)}_{min}}}}{2} = \frac{{60 - 20}}{2} = 20\;N/m{m^2}\)
Now,
Mean stress,
\({\sigma _m} = \sqrt {\sigma _{xm}^2 - {\sigma _{xm}}\;{\sigma _{ym}} + \sigma _{ym}^2} \)
\({\sigma _m} = \sqrt {{{65}^2} - \left( {65 \times 40} \right) + {{40}^2}} \)
∴ σm = 56.789 N/mm2
Now,
\({\rm{Amplitude\;stress\;}}\left( {{\sigma _a}} \right) = \sqrt {\sigma _{xa}^2 - {\sigma _{xa}} \cdot {\sigma _{ya}} + \sigma _{ya}^2} \)
\({\sigma _a} = \sqrt {{{25}^2} - \left( {25 \times 20} \right) + {{20}^2}} \)
∴ σa = 22.912 N/mm2