Self Studies
Selfstudy
Selfstudy

Design of Machine Elements Test 1

Result Self Studies

Design of Machine Elements Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A shaft rotating at constant speed is subjected to an axial tensile stress of 20 kN/mm2 and bending stress of 30 kN/mm2. The stress ratio is
    Solution

    Explanation:

    Given:

    \({\sigma _{axial}} = 20\;{\rm{kN}}/{\rm{m}}{{\rm{m}}^2}\;,\;\;{\sigma _{bending}} = 30\;{\rm{kN}}/{\rm{m}}{{\rm{m}}^2}\)

    Now,

    σmax = σaxial + σbending = 20 + 30 = 50 kN/mm2

    σmin = σaxial - σbending = 20 – 30 = -10 kN/mm2

    \({\rm{Stress\;ratio}} = \frac{{{\sigma _{min}}}}{{{\sigma _{max}}}} = \frac{{ - 10}}{{50}}\)

    Stress ratio = - 0.2

  • Question 2
    1 / -0
    A steel component has an endurance limit of 450 MPa. The theoretical stress concentration factor and notch sensitivity of the material is 2.51 and 0.8 respectively. The corrected endurance limit in MPa is __________
    Solution

    Concept:

    The notch sensitivity factor is given by:

    \(q = \frac{{{K_f} - 1}}{{{K_t} - 1}} \Rightarrow {K_f} = 1 + q\left( {{K_t} - 1} \right)\;where,\;{K_f} = fatigue\;stress\;conc.\;factor\)

    The modifying factor to account for stress concentration \({K_d} = \frac{1}{{{K_f}}}\)

    The corrected endurance limit is: \({S_e}' = {S_e}{K_d} = \frac{{{S_e}}}{{{K_f}}}\)

    Calculation:

    \({K_f} = 1 + q\left( {{K_t} - 1} \right) = 1 + 0.8\left( {2.51 - 1} \right) = 2.208\)

    \({S_e}' = \frac{{{S_e}}}{{{K_f}}} = \frac{{450}}{{2.208}} = 203.8\;MPa\)
  • Question 3
    1 / -0

    For a particular component undergoing fatigue testing, the following data is obtained:

    Corrected endurance limit = 400 MPa

    Maximum stress = 100 MPa, Minimum stress = 0

    As per the Gerber’s relation, the ultimate tensile strength of the material is:
    Solution

    Concept:

     Soderberg 

     Criterion

     \(\frac{{{σ _m}}}{{{σ _{yt}}}} + \frac{{{σ _a}}}{{{σ _e}}} = \frac{1}{{FS}}\)

     Goodman

     Criterion

     \(\frac{{{σ _m}}}{{{σ _{ut}}}} + \frac{{{σ _a}}}{{{σ _e}}} = \frac{1}{{FS}}\)

     Gerber

     Criterion

     \({\left( {\frac{{{σ _m}}}{{{σ _{ut}}}}} \right)^2}FS + \frac{{{σ _a}}}{{{σ _e}}} = \frac{1}{{FS}}\)

    The Gerber’s relation for fatigue loading is: (Take FS = 1)

    \(\frac{{{S_a}}}{{{S_e}}} + {\left( {\frac{{{S_m}}}{{{S_{ut}}}}} \right)^2} = 1\)

    \({σ _a} = \frac{{{σ _{max}} - {σ _{min}}}}{2}\)

    \({σ _m} = \frac{{{σ _{max}}+ {σ _{min}}}}{2}\)

    Calculation:

    Given: σmax = 100 MPa, σmin = 0, σe = 400 MPa

    Amplitude stress:

    \({σ _a} = \frac{{100}}{2} = 50\;MPa\)

    Mean stress:

    \({σ _m} = \frac{{100}}{2} = 50\;MPa\)

    Putting the above values:

    \(\frac{{50}}{{400}} + {\left( {\frac{{50}}{{{S_{ut}}}}} \right)^2} = 1 \Rightarrow {S_{ut}} = 53.452\;MPa\)
  • Question 4
    1 / -0
    A machine component is subjected to two-dimensional stresses. The tensile stress in y-direction varies from 20 to 60 N/mm2 while in x-direction varies from 40 to 90 N/mm2. The endurance limit is 270 N/mm2. Calculate the mean and amplitude stress (in N/mm2)
    Solution

    Explanation:

    Given:

    y)min = 20 N/mm2, (σy)max = 60 N/mm2, (σx)min = 40 N/mm2, (σx)max = 90 N/mm2

    Mean and amplitude stress in x-direction

    \({\sigma _{xm}} = \frac{{{{\left( {{\sigma _x}} \right)}_{max}} + {{\left( {{\sigma _x}} \right)}_{min}}}}{2} = \frac{{90 + 40}}{2} = 65\;N/m{m^2}\)

    \({\sigma _{xa}} = \frac{{{{\left( {{\sigma _x}} \right)}_{max}} - {{\left( {{\sigma _x}} \right)}_{min}}}}{2} = \frac{{90 - 40}}{2} = 25\;N/m{m^2}\)

    Similarly in y-direction,

    \({\sigma _{ym}} = \frac{{{{\left( {{\sigma _y}} \right)}_{max}} + {{\left( {{\sigma _y}} \right)}_{min}}}}{2} = \frac{{60 + 20}}{2} = 40\;N/m{m^2}\)

    \({\sigma _{ya}} = \frac{{{{\left( {{\sigma _y}} \right)}_{max}} - {{\left( {{\sigma _y}} \right)}_{min}}}}{2} = \frac{{60 - 20}}{2} = 20\;N/m{m^2}\)

    Now,

    Mean stress,

    \({\sigma _m} = \sqrt {\sigma _{xm}^2 - {\sigma _{xm}}\;{\sigma _{ym}} + \sigma _{ym}^2} \)

    \({\sigma _m} = \sqrt {{{65}^2} - \left( {65 \times 40} \right) + {{40}^2}} \) 

    σm = 56.789 N/mm2

    Now,

    \({\rm{Amplitude\;stress\;}}\left( {{\sigma _a}} \right) = \sqrt {\sigma _{xa}^2 - {\sigma _{xa}} \cdot {\sigma _{ya}} + \sigma _{ya}^2} \) 

    \({\sigma _a} = \sqrt {{{25}^2} - \left( {25 \times 20} \right) + {{20}^2}} \) 

    σa = 22.912 N/mm2  

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now