Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The number of distinct real values of x for which the matrix \(\left( {\begin{array}{*{20}{c}} x&1&1\\ 1&x&1\\ 1&1&x \end{array}} \right)\) is singular is

    Solution

    Explanation:

    \(A = \left[ {\begin{array}{*{20}{c}} x&1&1\\ 1&x&1\\ 1&1&x \end{array}} \right]\)

    Matrix A is said to be singular when |A| = 0

    \( \Rightarrow \left| {\begin{array}{*{20}{c}} x&1&1\\ 1&x&1\\ 1&1&x \end{array}} \right| = 0\)

    ⇒ x(x2 - 1) – 1 (x - 1) + 1 (1 - x) = 0

    ⇒ x3 – x – x + 1 + 1 – x = 0

    ⇒ x3 – 3x + 2 = 0

    ⇒ x = 1, 1, -2.

    The number of district real values of x = 2.

  • Question 2
    1 / -0

    2x + 3y + 5z = 9

    7x + 3y – 2z = 8

    2x + 3y + λz = 7

    For unique solution, the value of ‘λ’ should not be equal to
    Solution

    Explanation:

    For unique solution, the coefficient matrix rank should be 3.

    \(\left[ {\begin{array}{*{20}{c}}2&3&5\\7&3&{ - 2}\\2&3&\lambda \end{array}} \right]\left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}9\\8\\7\end{array}} \right]\) 

    Thus,

    \(\left| {\begin{array}{*{20}{c}}2&3&5\\7&3&{ - 2}\\2&3&\lambda \end{array}} \right| \ne 0\) 

    2 (3λ + 6) – 3 (7λ + 4) + 5 (21 - 6) ≠ 0

    6λ + 12 – 21λ - 12 + 75 ≠ 0

    -15λ + 75 ≠ 0

    -15 (λ - 5) ≠ 0

    Thus, λ ≠ 5
  • Question 3
    1 / -0

    If \(A\left[ {\begin{array}{*{20}{c}}1&1\\{ - 1}&1\end{array}} \right]\) and A4 = kI, where I is identity matrix

    What is value of k?
    Solution

    Explanation:

    \({A^2} = A \cdot A = \left[ {\begin{array}{*{20}{c}}1&1\\{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\{ - 1}&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0&2\\{ - 2}&0\end{array}} \right]\) 

    \({A^4} = {A^2}{A^2} = \left[ {\begin{array}{*{20}{c}}0&2\\{ - 2}&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0&2\\{ - 2}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 4}&0\\0&{ - 4}\end{array}} \right]\) 

    \(\therefore {A^4} = - 4\;\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right] = - 4I\)
  • Question 4
    1 / -0
    The Eigen values of the matrix \(\left[ {\begin{array}{*{20}{c}}3&0&0\\0&2&{ - 3}\\0&1&{ - 2}\end{array}} \right]\) are
    Solution

    Concept:

    If A is any square matrix of order n, we can form the matrix [A – λI], where I is the nth order unit matrix. The determinant of this matrix equated to zero i.e. |A – λI| = 0 is called the characteristic equation of A.

    The roots of the characteristic equation are called Eigen values or latent roots or characteristic roots of matrix A.

    Properties of Eigen values:

    The sum of Eigen values of a matrix A is equal to the trace of that matrix A

    The product of Eigen values of a matrix A is equal to the determinant of that matrix A

    Calculation:

    Let \(A = \left[ {\begin{array}{*{20}{c}}3&0&0\\0&2&{ - 3}\\0&1&{ - 2}\end{array}} \right]\)

    |A – λI| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}}{3 - \lambda }&0&0\\0&{2 - \lambda }&{ - 3}\\0&1&{ - 2 - \lambda }\end{array}} \right| = 0\)

    ⇒ (3 – λ) [ (2 – λ) (-2 – λ) – (-3)] = 0

    ⇒ (3 – λ) [-4 – 2 λ + 2 λ + λ2 + 3] = 0

    ⇒ (3 – λ) [λ2 – 1] = 0

    ⇒ λ = 3, 1, –1

    Eigen values of given matrix = 3, 1, –1

    Alternate Method:

    Sum of Eigen values of given matrix = Trace = 3 + 2 - 2 = 3

    From the options -1, 1 and 3 is correct.
  • Question 5
    1 / -0

    The matrix \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm{a}}&0&3&7\\ 2&5&1&3\\ 0&0&2&4\\ 0&0&0&{\rm{b}} \end{array}} \right]\) has \(\rm det(A) = 100\) and \(\rm trace(A) = 14\).

    The value of \(\rm |a-b|\) is ________.
    Solution

    Calculation:

    Given:

    Trace (A) = 14, det(A) = 100

    Trace of (A) = sum of diagonal elements

    \(\left[ {\begin{array}{*{20}{c}}a&0&3&7\\2&5&1&3\\0&0&2&4\\0&0&0&b\end{array}} \right]\) 

    14 = a + 5 + 2 + b

    a + b = 7         ---(1)

    Now,

    \(\det \left( A \right) = 5\left| {\begin{array}{*{20}{c}}a&3&7\\0&2&4\\0&0&b\end{array}} \right|\)

    \(5 \times 2 \times a \times b = 100\) 

    ab = 10          ---(2)

    from equation (1) and (2)

    Either,  a = 5, b = 2

    Or,        a = 2, b = 5

    So,

    |a - b| = |5 - 2| = |2 - 5| = 3

  • Question 6
    1 / -0

    Find the Eigen vector of matrix A corresponding to highest Eigen value.

    \(A = \left[ {\begin{array}{*{20}{c}} 3&1&4\\ 0&2&6\\ 0&0&5 \end{array}} \right]\)

    Solution

    Explanation:

    Characteristic equation is |A - λI| = 0

    \(\left| {\begin{array}{*{20}{c}}{3 - \lambda }&1&4\\0&{2 - \lambda }&6\\0&0&{5 - \lambda }\end{array}} \right| = 0\) 

    (3 - λ)(2 - λ)(5 - λ) = 0

    λ = 2, 3, 5

    Note:

    The Eigen values of a triangular matrix are the diagonal elements

    Now, highest Eigen value = 5

    Eigen vector corresponding to Eigen value, λ = 5

    ⇒ [A – 5I]X = 0

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}{ - 2}&1&4\\0&{ - 3}&6\\0&0&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = 0\) 

    ⇒ -2x + y + yz = 0     …1)

    & -3y + 6z = 0 ⇒ y = 2z

    Put in 1)

    -2x + 2z + 4z = 0

    x = 3z

    Thus,

    \(\frac{x}{3} = \frac{y}{2} = \frac{z}{1}\)

    Thus, Eigen vector is \( \Rightarrow \left[ {\begin{array}{*{20}{c}}3\\2\\1\end{array}} \right]\) 
  • Question 7
    1 / -0

    Find the value of x and y for the below given simultaneous equations if it has no solutions?

    a + b + c = 18

    2a + 4b + 6c = 12

    2a + 4b + xc = y
    Solution

    Concept:

    If |A| ≠ 0 ⇒ It has a unique solution.

    If |A| =  0 ⇒ It has either no solution or infinite solution.

    ρ(A) ≠ ρ(A|B) ⇒ It has either no solution

    ρ(A) = ρ(A|B) r < n⇒ It has infinite solution

    Calculation:

    For given system of equations to have no solution, the determinant of the coefficient matrix should be equal to 0

    \(\left| {\begin{array}{*{20}{c}} 1&1&1\\ 2&4&6\\ 2&4&x \end{array}} \right| = 0\)

    \(1 \times \left( {4x - 24} \right) - 1 \times \left( {2x - 12} \right) + 1\left( {8 - 8} \right) = 0\)

    \(2x - 12 = 0\)

    \(\therefore x = 6\)

    Augmented matrix is given by

    \(\left[ {\begin{array}{*{20}{c}} 1&1&1&{18}\\ 2&4&6&{12}\\ 2&4&6&y \end{array}} \right]\)

    \(R3 \to R3 - R2\)

    \(\left[ {\begin{array}{*{20}{c}} 1&1&1&{18}\\ 2&4&6&{12}\\ 0&0&0&{y - 12} \end{array}} \right]\)

    For given system of equations to have no solution, the rank of the augmented matrix should not be equal to coefficient matrix

    ρ(A) = 2

    \(\therefore y - 12 ≠ 0\)

    \(\therefore y ≠ 12\)

  • Question 8
    1 / -0

    Find the matrix A if

    \(\left[ {\begin{array}{*{20}{c}}2&1\\3&2\end{array}} \right]A\left[ {\begin{array}{*{20}{c}}{ - 3}&2\\5&{ - 3}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2}&4\\3&{ - 1}\end{array}} \right]\)

    Solution

    Explanation:

    Let \(B = \left[ {\begin{array}{*{20}{c}}2&1\\3&2\end{array}} \right],C = \left[ {\begin{array}{*{20}{c}}{ - 3}&2\\5&{ - 3}\end{array}} \right]\) 

    \(D = \left[ {\begin{array}{*{20}{c}}{ - 2}&4\\3&{ - 1}\end{array}} \right]\) 

    Then, BAC = D

    AC = B-1.D

    A = B-1.D.C-1

    Now,

    \({B^{ - 1}} = \frac{{adj\;B}}{{\left| B \right|}} = \frac{1}{1}\left[ {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 3}&2\end{array}} \right]\)

    \({C^{ - 1}} = \frac{1}{{9 - 10}}\left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 2}\\{ - 5}&{ - 3}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}3&2\\5&3\end{array}} \right]\) 

    \(A = \left[ {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ - 2}&4\\3&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3&2\\5&3\end{array}} \right]\) 

    \(A = \left[ {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{14}&8\\4&3\end{array}} \right]\) 

    \(\therefore A = \left[ {\begin{array}{*{20}{c}}{24}&{13}\\{ - 34}&{ - 18}\end{array}} \right]\)

  • Question 9
    1 / -0
    If \(A = \left[ {\begin{array}{*{20}{c}}2&{ - 3}\\1&{ - 1}\end{array}} \right]\) then what is |A1009 – 5 A1008| = ?
    Solution

    Explanation:

    \(a = \left[ {\begin{array}{*{20}{c}}2&{ - 3}\\1&{ - 1}\end{array}} \right]\) 

    |A| = -2 + 3 = 1

    |A1009 – 5 A1008| = |A1008 (A – 5I)|

    |A1009 – 5 A1008| = |A1008| |(A – 5I)|

    |A1009 – 5 A1008| = |A|1008 |(A – 5I)|

    |A1009 – 5 A1008| = |A – 5I|

    Now,

    \(A - 5I = \left[ {\begin{array}{*{20}{c}}2&{ - 3}\\1&{ - 1}\end{array}} \right] - 5\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\) 

    \(A - 5I = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 3}\\1&{ - 6}\end{array}} \right]\) 

    |A – 5I| = 18 + 3 = 21

    ∴ |A1009 – 5A1008| = 21
  • Question 10
    1 / -0

    Let \(P = \left[ {\begin{array}{*{20}{c}}1&1&{ - 1}\\2&{ - 3}&4\\3&{ - 2}&3\end{array}} \right]\;and\;Q = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}&{ - 1}\\6&{12}&6\\5&{10}&5\end{array}} \right]\) be two matrices.

    Then the rank of P + Q is ______.

    Solution

    Concept:

    The rank of a matrix is defined as the maximum number of linearly independent column vectors in the matrix or the maximum number of linearly independent row vectors in the matrix.

    In terms of determinant, rank of a matrix can be viewed as m where m is the size of the largest non- zero m × m submatrix with non-zero determinant.

    Calculation:  

    \(P = \left[ {\begin{array}{*{20}{c}}1&1&{ - 1}\\2&{ - 3}&4\\3&{ - 2}&3\end{array}} \right]\;and\;Q = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}&{ - 1}\\6&{12}&6\\5&{10}&5\end{array}} \right]\)

    \(Let\;X = P + Q = \;\left[ {\begin{array}{*{20}{c}}0&{ - 1}&{ - 2}\\8&9&{10}\\8&8&8\end{array}} \right]\)

    \(\left| X \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}&{ - 2}\\8&9&{10}\\8&8&8\end{array}} \right|\)

    |X| = 0 (72 – 80) – (–1) (64 – 80) – 2(64 – 72) 

    ∴ |X| = 0 + (–16) + 16 = 0

    Rank of 3 × 3 matrix is zero.

    ∴ Rank(X) ≠ 3

    \(\left| {\begin{array}{*{20}{c}}0&{ - 1}\\8&9\end{array}} \right| = 8 \ne 0\)

    Determinant of 2 × 2 matrix is nonzero. So, rank of X is 2.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now