Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 12

Result Self Studies

Engineering Mathematics Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate the iterative steps for solution using Newton-Raphson method for the equation x3 – 23 = 0
    Solution

    Explanation:

    \(f\left( {{x_n}} \right) = x_n^3 - 23\)

    \(f'\left( {{x_n}} \right) = 3x_n^2\)

    According to Newton-Raphson formula,

    \({x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}\)

    \({x_{n + 1}} = {x_n} - \left( {\frac{{x_n^3 - 23}}{{3x_n^2}}} \right)\)

    \({x_{n + 1}} = \frac{{3x_n^3 - x_n^3 + 23}}{{3x_n^2}} = \frac{{2x_n^3 + 23}}{{3x_n^2}}\)
  • Question 2
    1 / -0
    The quadratic equation 2x2 – 3x + 3 = 0 is to be solved numerically starting with an initial guess as x0 = 0. The new estimate of x after the first iteration using Newton Raphson method is ______
    Solution

    Concept:

    Newton Raphson Method:

    \(\begin{array}{l} {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}\ \end{array}\)  

    Calculation:

    Given:

    f(x) = x2 – 3x + 3

    f (x0 = 0) = 3

    f’(x) = 4x – 3

    f’ (x0 = 0) = - 3

    By Newton Raphson method

    \({x_i} = {x_o} - \frac{{f\left( {{x_o}} \right)}}{{f'\left( {{x_o}} \right)}}\)

    \({x_1} = 0 - \frac{3}{{ - 3}}\)

    x1 = 1

    ∴ The new estimate of x after the first iteration using Newton Raphson method is 1
  • Question 3
    1 / -0
    Considering four subintervals, the value of \(\mathop \smallint \limits_0^1 \frac{1}{{1 + x}}dx\) by Trapezoidal rule is:
    Solution

    \(\mathop \smallint \limits_0^1 \frac{1}{{1 + x}}dx\)

    number of intervals = 4

    x

    0

    0.25

    0.5

    0.75

    1

    f(x)

    y0 = 1

    y= 0.8

    y2 = 0.66

    y3 = 0.57

    y4 = 0.5

     

    \(h = \frac{1}{4} = 0.25\)

    By Trapezoidal rule,

    \(\mathop \smallint \limits_{{x_0}}^{{x_0} + nh} f\left( x \right)\;dx = \frac{h}{2}\left[ {\left( {{y_0} + {y_n}} \right) + 2\left( {{y_1} + {y_2} + \ldots + {y_{n - 1}}} \right)} \right]\)

    \(\mathop \smallint \limits_0^1 \frac{1}{{1 + x}}dx = \frac{h}{2}\left[ {\left( {{y_0} + {y_4}} \right) + 2\left( {{y_1} + {y_2} + {y_3}} \right)} \right]\)

    \(= \frac{1}{8}\left[ {\left( {1 + 0.5} \right) + 2\left( {0.8 + 0.66 + 0.57} \right)} \right]\)

    = 0.695

  • Question 4
    1 / -0
    Compute the root of function f(x) = x2 – 3 after two iterations using bisection method in the interval [0, 2]
    Solution

    Explanation:

    Let x0 = 0, x1 = 2

    f(x0) = -3 = -ve, f(x1) = 1 = +ve

    So, root lies between 0 and 2

    1st iteration:

    \({x_2} = \frac{{0 + 2}}{2} = 1\)

    f(x2) = 1 – 3 = -2 (-ve)

    So, root lies between 1 and 2

    2nd iteration:

    \({x_3} = \frac{{1 + 3}}{2}\)

    x3 = 1.5

  • Question 5
    1 / -0

    Solve the differential equation \(\frac{{dy}}{{dx}} - \left( {xy + {x^2}} \right) = 0\) with the initial condition y(0) = 0 using Euler’s first order method with step size of 1.

    The value of y(3) will be equal to
    Solution

    Explanation:

    Given:

    \(\frac{{dy}}{{dx}} - \left( {xy + {x^2}} \right) = 0\)

    \(\frac{{dy}}{{dx}} = xy + {x^2} = f\left( {x,\;y} \right)\)

    Concept:

    Euler’s first order formula is

    yn+1 = yn + h f(xn, yn)

    y1 = y0 + h f (x0, y0)       ----(1)

    f(x0, y0) = 0 + 0 = 0

    h = 1

    y0 = 0

    y1 = 0 + 1 (0) = 0

    x1 = x0 + h = 0 + 1 = 1

    f(x1, y1) = 1(0) + 12 = 1

    y2 = y1 + h f(x1, y1)

    y2 = 0 + 1 (1) = 1

    x2 = x1 + h = 1 + 1 = 2

    Now,

    y3 = y2 + h f(x2, y2)

    f(x2, y2) = 2(1) + 22 = 6

    y3 = 1 + 1.(6) = 7

  • Question 6
    1 / -0
    Apply Gauss-seidel method to solve the equations: 20x + y – 2z = 17; 3x + 20y – z = -18; 2x – 3y + 20z = 25. Assume initial guess x0 = y0 = z0 = 0, then value of ‘z’ after first iteration is ______
    Solution

    Explanation:

    Equation are

    20x + y – 2z = 17

    3x + 20y – z = -18

    2x – 3y + 20z = 25

    Re-writing the above equations.

    \(x = \frac{1}{{20}}\left( {17 - y + 2z} \right)\)         ---(1)

    \(y = \frac{1}{{20}}\left( { - 18 - 3x + z} \right)\)        ---(2)

    \(z = \frac{1}{{20}}\left( {25 - 2x + 3y} \right)\)          ---(3)

    Putting y0 = z0 = 0 in equation (1)

    \({x_1} = \frac{1}{{20}}\left( {17 - 0 + 0} \right)\)

    x1 = 0.85

    Putting x = 0.85, z = 0 in equation (2)

    \({y_1} = \frac{1}{{20}}\left( { - 18 - \left( {3 \times 0.85} \right) + 0} \right)\)

    y1 = - 1.0275

    Putting x = 0.85, y = -1.0275 in eq. (3)

    \({z_1} = \frac{1}{{20}}\left[ {25 - \left( {2 \times 0.85} \right) + 3\left( { - 1.0275} \right)} \right]\)

    z1 = 1.010875

  • Question 7
    1 / -0

    The area of seven horizontal cross-sections of a water reservoir at the interval of 9m is 210, 250, 320, 350, 290, 230 and 170 m2. The estimated volume of the reservoir in m3 using Simpson (1/3)rd rule is ________. 

    Solution

    Concept:

    According to Simpson’s (1/3)rd rule,

    The estimated volume of the reservoir

    \( = \frac{1}{3} \times h\left\{ {{A_0} + {A_6} + 4\left( {{A_1} + {A_3} + {A_5}} \right) + 2\left( {{A_2} + {A_4}} \right)} \right\}\)

    where

    h = interval at which cross – section are taken

    A0, A1, A2, ……. A6 are the seven cross-sections taken at 9 m interval.

    Calculations:

    The volume of the reservoir (V)

    \(V = \frac{1}{3} \times 9\left[ {210 + 170 + 4\left( {250 + 350 + 230} \right) + 2\left( {320 + 290} \right)} \right]\)

    \(V = \frac{1}{3} \times 9 \times 4920\)

    V = 14760 m3

  • Question 8
    1 / -0
    An equation \(\sin x = \frac{1}{x}\) is required to be solved by the Bisection method where x lies between 1 and 1.5 (x is in radian). The approximate root of the fourth iteration will be: (Correct upto four decimal places)
    Solution

    Explanation:

    f(x) = x sin x – 1

    f(1) = -0.158529 < 0

    f(1.5) = 0.496242 > 0

    So root will lie between 1 & 1.5

    \({x_1} = \frac{1}{2}\left( {1 + 1.5} \right) = 1.25\)

    f(x1) = 0.18623 > 0

    so root lies between 1 & 1.25

    \({x_2} = \frac{1}{2}\left( {1 + 1.25} \right) = 1.125\)

    f(x2 ) = 0.01505 > 0

    So root lies between 1 & 1.125

    \({x_3} = \frac{{1 + 1.25}}{2} = 1.0625\)

    f(x3) = -0.0718 < 0

    f(x2) > 0 & f(x3) < 0

    So root lies between x2 & x3

    \({x_4} = \frac{{{x_2} + {x_3}}}{2} = \frac{{1.125 + 1.0625}}{2} = 1.09375\)
  • Question 9
    1 / -0
    Consider the first order initial value problem y’ + y = 0, y(0) = 1 for x = 0.1, the solution obtained using a single iteration  of the third order Runge Kutta method with step-size h = 0.1 is _________.
    Solution

    Concept:

    \(\frac{{dy}}{{dx}} = f\left( {x,y} \right),\;y\left( {{x_0}} \right) = {y_0}\)

    Runge-Kutta Method of first order:

    k1 = h f(x0, y0)

    y1 = y0 + k where k = k1 = h f (x0, y0)

    y2 = y1 + k where k = h f (x1, y1)

    Runge-Kutta Method of Second order:

    k1 = h f(x0, y0)

    k2 = h f (x0 + h, y0 + k1)

    \(k = \frac{{{k_1} + {k_2}}}{2}\)

    y1 = y0 + k

    Runge-Kutta Method of Third order:

    k1 = h f (x0, y0)

    \(\begin{array}{l} {k_2} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_1}}}{2}} \right)\\ k' = hf\left( {{x_0} + h,{y_0} + {k_1}} \right) \end{array}\)  

    \(\begin{array}{l} {k_3} = hf\left( {{x_0} + h,{y_0} + k'} \right)\\ k = \frac{1}{6}\left( {{k_1} + 4{k_2} + {k_3}} \right) \end{array}\)  

    y1 = y0 + k

    Runge-Kutta Method of fourth order:

    k1 = h f (x0, y0)

    \(\begin{array}{l} {k_2} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_1}}}{2}} \right)\\ {k_3} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_2}}}{2}} \right) \end{array}\)  

    \(\begin{array}{l} {k_4} = hf\left( {{x_0} + h,{y_0} + {k_3}} \right)\\ k = \frac{1}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right) \end{array}\)  

    y1 = y0 + k

    Calculation:

    Question is about third order Runge Kutta method with step-size h = 0.1.

    \(\frac{{dy}}{{dx}} = - y = f\left( {x,y} \right);{x_0} = 0,\;{y_0} = 1\)

    f(x0, y0 ) = f(0, 1) = -1

    k1 = h f (x0, y0) = 0.1 × (-1) = -0.1

    \({k_2} = hf\left( {{x_0} + \frac{h}{2},{y_0} + \frac{{{k_1}}}{2}} \right) = hf\left( {0.05,\;0.95} \right)\)

    = 0.1 [-0.95] = -0.095

    k’ = h f (x0 + h, y0 + k1) = h f (0.1, 0.9) = =0.9 h

    k’ = -0.09

    k3 = h f (x0 + h, y0 + k’) = h f (0.1, 0.91) = -0.91 h

    k3 = -0.091

    \(\begin{array}{l} k = \frac{1}{6}\left( {{k_1} + 4{k_2} + {k_3}} \right)\\ = \frac{{ - 1}}{6}\left( {0.1 + 4\left( {0.095} \right) + 0.091} \right) = - 0.095167 \end{array}\)  

    y1 = y0 + k = 1 - 0.095167 = 0.9
  • Question 10
    1 / -0
    Find the positive root of x4 – x = 10 after 1st iteration and 2nd iteration (x2) with initial value x0 = 2. Using Newton-Raphson method
    Solution

    Explanation:

    Let f(x) = x4 – x – 10

    f'(x) = 4x3 – 1

    Newton-Raphson’s formula is

    \({x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}\)

    Putting n = 0, first approximation is given by

    \({x_1} = {x_0} - \frac{{f\left( {{x_0}} \right)}}{{f'\left( {{x_0}} \right)}}\)     ---(1

    Since, x0 = 2

    f(x0) = 24 – 2 – 10 = 4

    f’(x0) = 31

    Put in (1)

    \({x_1} = 2 - \frac{4}{{31}}\)

    x1 = 1.8709

    Also,

    \({x_2} = {x_1} - \frac{{f\left( {{x_1}} \right)}}{{f'\left( {{x_1}} \right)}}\)     ---(2)

    f(x1) = (1.8709)4 – 1.8709 – 10 = 0.3809

    f’(x1) = 4(1.8709)3 – 1 = 25.1945

    \({x_2} = 1.8709 - \frac{{0.3809}}{{25.1945}} = 1.8557\)

    x2 = 1.8557
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now