Explanation:
\(\frac{{\partial \left( {u,\;v,\;w} \right)}}{{\partial \left( {x,\;y,\;z} \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial x}}}&{\frac{{\partial u}}{{\partial y}}}&{\frac{{\partial u}}{{\partial z}}}\\ {\frac{{\partial v}}{{\partial x}}}&{\frac{{\partial v}}{{\partial y}}}&{\frac{{\partial v}}{{\partial z}}}\\ {\frac{{\partial w}}{{\partial x}}}&{\frac{{\partial w}}{{\partial y}}}&{\frac{{\partial w}}{{\partial z}}} \end{array}} \right|\)
Now,
\(\frac{{\partial u}}{{\partial x}} = 1\;;\;\frac{{\partial u}}{{\partial y}} = 6y\;;\;\frac{{\partial u}}{{\partial z}} = - 3{z^2}\)
\(\frac{{\partial v}}{{\partial x}} = 8xyz\;;\;\frac{{\partial v}}{{\partial y}} = 4{x^2}z\;;\;\frac{{\partial v}}{{\partial z}} = 4{x^2}y\)
\(\frac{{\partial w}}{{\partial x}} = - y\;;\;\frac{{\partial w}}{{\partial y}} = - x\;;\;\frac{{\partial w}}{{\partial z}} = 4z\)
Thus,
\(\frac{{\partial \left( {u,\;v,\;w} \right)}}{{\partial \left( {x,\;y,\;z} \right)}} = \left| {\begin{array}{*{20}{c}} 1&{6y}&{3{z^2}}\\ {8xyz}&{4{x^2}z}&{4{x^2}y}\\ { - y}&{ - x}&{4z} \end{array}} \right|\)
At point (1, -1, 0).
\(\frac{{\partial \left( {u,\;v,\;w} \right)}}{{\partial \left( {x,\;y,\;z} \right)}} = \left| {\begin{array}{*{20}{c}} 1&{ - 6}&0\\ 0&0&{ - 4}\\ 1&{ - 1}&0 \end{array}} \right|\)
= 4 - 24 = - 20