Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {4 - x}&{x \le 2}\\ {kx - 4}&{x > 2} \end{array}} \right.\) is a continuous function for all real values of x, then f(8) is equal to ________.
    Solution

    Explanation:

    For continuous function:

    \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\)

    \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {4 - x} \right) = \mathop {\lim }\limits_{x \to 2} \left( {4 - x} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {kx - 4} \right)\)

    (4 - 2) = 2 k - 4

    k = 3

    f(8) = k(8) - 4 = 3(8) - 4 = 20
  • Question 2
    1 / -0
    The integral \(\mathop \smallint \limits_2^\infty \frac{{dx}}{{x\log x}}\)
    Solution

    Explanation:

    The given integral is an improper integral of 1st kind.

    \(I = \mathop \smallint \limits_2^\infty \frac{{\left( {1/x} \right)}}{{\log x}}dx\)

    \(I = \left[ {\log \left( {\log x} \right)} \right]_2^\infty \)

    I = log [log (∞)] – log [log (2)]

    I =

    Given integral is divergent and diverges to ∞
  • Question 3
    1 / -0

    The value of the following limit is

    \(\mathop {\lim }\limits_{z \to 1} \left( {1 - z} \right)\tan \frac{{\pi z}}{2}\)

    Solution

    Explanation:

    \(f\left( z \right) = \mathop {\lim }\limits_{z \to 1} \left( {1 - z} \right)\tan \frac{{\pi z}}{2}\)

    Let z = 1 + h

    As z → 1, h → 0

    Now, the limit becomes

    \(= \mathop {\lim }\limits_{h \to 0} \left( { - h} \right)\tan \frac{\pi }{2}\left( {1 + h} \right)\)

    \(= \mathop {\lim }\limits_{h \to 0} \left[ { - h\tan \left( {\frac{\pi }{2} + \frac{\pi }{2}h} \right)} \right]\)

    \(= \mathop {\lim }\limits_{h \to 0} \left[ {h\cot \left( {\frac{\pi }{2}h} \right)} \right]\)

    \(= \mathop {\lim }\limits_{h \to 0} \left[ {\frac{h}{{\sin \left( {\frac{\pi }{2}h} \right)}}\cos \left( {\frac{\pi }{2}h} \right)} \right]\)

    \(= \mathop {\lim }\limits_{h \to 0} \left[ {\frac{2}{\pi }\frac{{\frac{\pi }{2}h}}{{\sin \left( {\frac{\pi }{2}h} \right)}}\cos \left( {\frac{\pi }{2}h} \right)} \right]\)

    We know that, \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\)

    \(= \mathop {\lim }\limits_{h \to 0} \left[ {\frac{2}{\pi }\cos \left( {\frac{\pi }{2}h} \right)} \right] = \frac{2}{\pi }\)

  • Question 4
    1 / -0
    \(\smallint \frac{{dx}}{{1 + x + {x^2} + {x^3}}}\) is equal to
    Solution

    Explanation:

    Let \(I = \smallint \frac{{dx}}{{1 + x + {x^2} + {x^3}}} = \smallint \frac{{dx}}{{\left( {1 + x} \right)\left( {1 + {x^2}} \right)}}\)

    Let \(\frac{1}{{\left( {1 + x} \right)\left( {1 + {x^2}} \right)}} = \frac{A}{{1 + x}} + \frac{{Bx + C}}{{1 + {x^2}}}\)

    \(1 = A\left( {1 + {x^2}} \right) + \left( {Bx + C} \right)\left( {1 + x} \right)\)

    Comparing the coefficients of x2, x, and constant terms,

    \( \Rightarrow A + B = 0,\;B + C = 0,\;C + A = 1\)

    Solving these equations, we get

    \( \Rightarrow A = \frac{1}{2},\;B = - \frac{1}{2},\;C = \frac{1}{2}\)

    \(\begin{array}{l} I = \frac{1}{2}\smallint \frac{{dx}}{{\left( {1 + x} \right)}} - \frac{1}{2}\smallint \frac{{\left( {x - 1} \right)}}{{\left( {1 + {x^2}} \right)}}dx\\ = \frac{1}{2}\log \left( {1 + x} \right) - \frac{1}{4}\log \left( {{x^2} + 1} \right) + \frac{1}{2}{\tan ^{ - 1}}x\\ = \frac{1}{4}\left[ {\log \frac{{{{\left( {x + 1} \right)}^2}}}{{{x^2} + 1}} + 2{{\tan }^{ - 1}}x} \right] \end{array}\)

  • Question 5
    1 / -0
    Evaluate \(\mathop {\lim }\limits_{x \to 0} \frac{{\log x}}{{\cot x}}\;\)
    Solution

    Explanation:

    \(\mathop {\lim }\limits_{x \to 0} \frac{{\log x}}{{\cot x}}\;\left( {from\;\frac{\infty }{\infty }} \right)\)

    Now,

    Using L-Hospital rule-

    \(\mathop {\lim }\limits_{x \to 0} \frac{{1/x}}{{ - cose{c^2}x}} \Rightarrow \mathop {\lim }\limits_{x \to 0} \frac{{ - {{\sin }^2}x}}{x}\)

    \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x}.\;\mathop {\lim }\limits_{x \to 0} \left( { - \sin x} \right)\)

    \(\because\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\)

    \(\therefore \mathop {\lim }\limits_{x \to 0} \left( { - \sin x} \right) = 0\)

  • Question 6
    1 / -0
    In u = x + 3y2 – z3, ν = 4x2yz, w = 2z2 – xy evaluate ∂(u, ν, w)/∂(x, y, z) at (1, -1, 0) 
    Solution

    Explanation:

    \(\frac{{\partial \left( {u,\;v,\;w} \right)}}{{\partial \left( {x,\;y,\;z} \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial x}}}&{\frac{{\partial u}}{{\partial y}}}&{\frac{{\partial u}}{{\partial z}}}\\ {\frac{{\partial v}}{{\partial x}}}&{\frac{{\partial v}}{{\partial y}}}&{\frac{{\partial v}}{{\partial z}}}\\ {\frac{{\partial w}}{{\partial x}}}&{\frac{{\partial w}}{{\partial y}}}&{\frac{{\partial w}}{{\partial z}}} \end{array}} \right|\)

    Now,

    \(\frac{{\partial u}}{{\partial x}} = 1\;;\;\frac{{\partial u}}{{\partial y}} = 6y\;;\;\frac{{\partial u}}{{\partial z}} = - 3{z^2}\)

    \(\frac{{\partial v}}{{\partial x}} = 8xyz\;;\;\frac{{\partial v}}{{\partial y}} = 4{x^2}z\;;\;\frac{{\partial v}}{{\partial z}} = 4{x^2}y\)

    \(\frac{{\partial w}}{{\partial x}} = - y\;;\;\frac{{\partial w}}{{\partial y}} = - x\;;\;\frac{{\partial w}}{{\partial z}} = 4z\)

    Thus,

    \(\frac{{\partial \left( {u,\;v,\;w} \right)}}{{\partial \left( {x,\;y,\;z} \right)}} = \left| {\begin{array}{*{20}{c}} 1&{6y}&{3{z^2}}\\ {8xyz}&{4{x^2}z}&{4{x^2}y}\\ { - y}&{ - x}&{4z} \end{array}} \right|\)

    At point (1, -1, 0).

    \(\frac{{\partial \left( {u,\;v,\;w} \right)}}{{\partial \left( {x,\;y,\;z} \right)}} = \left| {\begin{array}{*{20}{c}} 1&{ - 6}&0\\ 0&0&{ - 4}\\ 1&{ - 1}&0 \end{array}} \right|\)

    = 4 - 24 = - 20

  • Question 7
    1 / -0
    If \(f\left( x \right) = A~\cos\left( {\frac{{2\pi x}}{5}} \right) + C,\;f'\left( {\frac{{15}}{4}} \right) = \frac{1}{2}\) and \(\mathop \smallint \nolimits_0^5 f\left( x \right)dx = \frac{{A\pi }}{2}\) then the value of A and C are respectively.
    Solution

    Explanation:

    \({\rm{f}}\left( {\rm{x}} \right) = {\rm{Acos}}\left( {\frac{{2{\rm{\pi x}}}}{5}} \right) + {\rm{C}}\)

    \({\rm{f'}}\left( {\rm{x}} \right) = - {\rm{Asin}}\left( {\frac{{2{\rm{\pi x}}}}{5}} \right) \times \frac{{2{\rm{\pi }}}}{5}\)

    \({\rm{f'}}\left( {\frac{{15}}{4}} \right) = - {\rm{Asin}}\left( {\frac{{2{\rm{\pi }}\left( {\frac{{15}}{4}} \right){\rm{\;}}}}{5}} \right) \times \frac{{2{\rm{\pi }}}}{5}\)

    \({\rm{f'}}\left( {\frac{{15}}{4}} \right) = - {\rm{A}}\left( { - 1} \right)\left( {\frac{{2{\rm{\pi }}}}{5}} \right) = \frac{1}{2}{\rm{\;}}\)

    \(\therefore {\rm{A}} = \frac{5}{{4{\rm{\pi }}}}\)

    \(\mathop \smallint \nolimits_0^5 {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{A\pi }}{2}\)

    \(f\left( x \right) = A~\cos\left( {\frac{{2\pi x}}{5}} \right) + C\)

    \(\mathop \smallint \nolimits_0^5 \left( {\;\frac{5}{{4{\rm{\pi }}}}{\rm{cos}}\left( {\frac{{2{\rm{\pi x}}}}{5}} \right) + {\rm{C\;}}} \right){\rm{dx\;}} = \frac{{\left( {\frac{5}{{4\pi }}} \right)\pi }}{2}\)

    \(\left[ {\frac{5}{{4\pi }}\left\{ {\sin \left( {\frac{{2\pi x}}{5}} \right) \times \frac{5}{{2\pi }}} \right\} + Cx} \right]_0^5 = \frac{5}{8}\)

    \(5C = \frac{5}{8}\)

    \(C = \frac{1}{8}\)

  • Question 8
    1 / -0
    If \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = k\pi ,\) then the value of k is equal to ______.
    Solution

    Concept –

    Following steps to solve the equation \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = k\pi ,\)

    1. To remove the modulus
    2. To keep sin x positive in the interval 0 to π to 2π and to keep the sinx negative in the interval
    • This is because x in the above equation is always positive but the value sinx changes in the two mentioned intervals.

     

    Explanation –

    Solving the equation as per the steps,

    \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = \mathop \smallint \nolimits_0^\pi xsinxdx + \left( { - \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx} \right)\)

    \(= \mathop \smallint \nolimits_0^\pi xsinxdx - \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx\)

    Keeping u = x, du = dx, dv = sinxdx, so v = - cosx,

    \(= \mathop \smallint \nolimits_0^\pi udv = uv - \mathop \smallint \nolimits_0^\pi vdu\)

    \( = \mathop \smallint \nolimits_0^\pi xsinxdx = \left[ { - xcosx} \right]_0^\pi + \mathop \smallint \nolimits_0^\pi cosxdx\;\)

    \( = \pi + \left[ {sinx} \right]_0^\pi \)

    Now, repeating the same with \(- \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx\), we get -3

    Hence, π - (-3π) = 4π

    Therefore, k = 4

  • Question 9
    1 / -0
    \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{x + \sin x}}{x}} \right)\)  equals to
    Solution

    Concept:

    • \(\mathop {\lim }\limits_{{\rm{\alpha }} \to 0} \frac{{\sin \left( {\rm{\alpha }} \right)}}{{\rm{\alpha }}} = 1\) and \(\mathop {\lim }\limits_{{\rm{\alpha }} \to 0} \frac{{\rm{\alpha }}}{{\sin \left( {\rm{\alpha }} \right)}} = 1\)              
    • \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{\;}} \pm {\rm{\;g}}\left( {\rm{x}} \right)} \right] = {\rm{\;}}\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;}} \pm \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;g}}\left( {\rm{x}} \right)\)
    • \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \left[ {\frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}}} \right]{\rm{\;}} = \frac{{\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;f}}\left( {\rm{x}} \right)}}{{\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;g}}\left( {\rm{x}} \right)}}\)

     

    Calculation:

    \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{x + \sin x}}{x}} \right)\)

    \( = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \frac{{\sin x}}{x}} \right) = 1\)

  • Question 10
    1 / -0

    If R is the region 0 ≤ x ≤ y ≤ L, then

    \(\mathop \int\!\!\!\int \limits_R \left( {{x^2} + {y^2}} \right)dx\;dy\) is

    Solution

    The given region is, R: 0 ≤ x ≤ y ≤ L

    The limits of x: 0 ≤ x ≤ L

    The limits of y: x ≤ y ≤ L

    \(\mathop \int\!\!\!\int \limits_R \left( {{x^2} + {y^2}} \right)dx\;dy\) 

    \( = \mathop \smallint \limits_{x = 0}^{x = L} \mathop \smallint \limits_{y = x}^{y = L} \left( {{x^2} + {y^2}} \right)dx\;dy\) 

    \(= \mathop \smallint \limits_{x = 0}^L \left[ {{x^2}y + \frac{{{y^3}}}{3}} \right]_x^2dx\) 

    \( = \mathop \smallint \limits_{x = 0}^L \left[ {{x^2}L + \frac{{{L^3}}}{3} - \frac{{{x^3}}}{3} - {x^3}} \right]dx\;\) 

    \(= \mathop \smallint \limits_{x = 0}^L \left[ {{x^2}L + \frac{{{L^3}}}{3} - \frac{{4{x^3}}}{3}} \right]dx\) 

    \(= \left[ {L\frac{{{x^3}}}{3} + \frac{{{L^3}}}{3}x - \frac{{{x^4}}}{3}} \right]_0^L\) 

    \(= \frac{{{L^4}}}{3} + \frac{{{L^4}}}{3} - \frac{{{L^4}}}{3} = \frac{{{L^4}}}{3}\) 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now