Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    The non-zero of n for which the differential equation (3xy2 + n2 x2y) dx + (nx3 + 3x2y) dy = 0, x ≠ 0 become exact differential equation is:

  • Question 2
    1 / -0

    If u = log (x2 + y2) where x + y + xy = 4, then \(\frac{{du}}{{dx}}\) at (1, 1) is

  • Question 3
    1 / -0

    For the function f(x) = sin x - cos x, use Rolle’s Theorem and find the point where derivative vanishes in [0, π].

  • Question 4
    1 / -0

    The value of ‘C’ of the Cauchy’s mean value theorem for f(x) = ex and g(x) = e-x in [2, 3] is _____.

  • Question 5
    1 / -0

    If \(u = x\log xy\), where \({x^3} + {y^3} + 3xy = 1\;\)then \(\frac{{du}}{{dx}}\) is equal to

  • Question 6
    1 / -0

    Find C of Cauchy’s mean value theorem for the function 1/x and 1/x2 in [4, 6]

  • Question 7
    1 / -0

    If the differential equation corresponding to the family of curves Y = (A + Bx) e3x is given by

    \(\frac{{{d^2}y}}{{d{x^2}}} = a\frac{{dy}}{{dx}} + by,\) then (a - b) is _____

  • Question 8
    1 / -0

    The maximum value of function f(x, y) = x3 y2 (1 - x - y) for x, y ϵ (0, ∞) is

  • Question 9
    1 / -0

    Find the maximum and minimum values of f(x) = sin x + cos 2x where \(0\le x \le 2\pi\)

  • Question 10
    1 / -0

    If \({y_1} = \frac{{{x_2} \cdot {x_3}}}{{{x_1}}},\;{y_2} = \frac{{{x_3}{x_1}}}{{{x_2}}},\;{y_3} = \frac{{{x_1}{x_2}}}{{{x_3}}},\) then the Jacobian of y1, y2, y3 w.r.t. x1, x2, x3 is ______

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now