Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 4

Result Self Studies

Engineering Mathematics Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Divergence value of a function \({x^3}y\vec i - \left( {{z^2} - 2y} \right)\vec j + 5{y^2}z\vec k\) at x = 2, y = 3 and z = 4 is
    Solution

    Concept:

    The divergence of any vector field  \(\vec A\) is defined as:

    \(Div= \vec \nabla .\vec A\)

    The nabla operator is defined as:

    \(\vec \nabla ={\hat i\frac{\partial }{{\partial x}} + \hat j\frac{\partial }{{\partial y}}}+\hat k\frac{\partial }{\partial z}\)

    Calculation:

    \(f = {x^3}y\vec i - \left( {{z^2} - 2y} \right)\vec j + 5{y^2}z\vec k\)

    \(Div\left( f \right) = \frac{\partial }{{\partial x}}\left( {{x^3}y} \right) + \frac{\partial }{{\partial y}}\left( { - \left( {{z^2} - 2y} \right)} \right) + \frac{\partial }{{\partial z}}\left( {5{y^2}z} \right)\)

    = 3x2y + (+2) + (5y2)

    = 3x2y + 5y2 + 2

    At (2, 3, 4)

    Div (f) = 3(2)2(3) + 5(3)2 + 2

    ∴ Div (f) = 36 + 45 + 2 = 83

  • Question 2
    1 / -0
    If \(\bar r = x\hat i + y\hat j + z\hat k\) and r = |r̅|, then ∇2 [log r] = ?
    Solution

    Concept:

    \({\nabla ^2}\left[ {f\left( r \right)} \right] = f''\left( r \right) + \frac{2}{r}f'\left( r \right)\)

    Calculation:

    \({\nabla ^2}\left[ {\log r} \right] = \frac{{ - 1}}{{{r^2}}} + \frac{2}{r}\left( {\frac{1}{r}} \right)\)

    \({\nabla ^2}\left[ {\log r} \right] = \frac{{ - 1}}{{{r^2}}} + \frac{2}{{{r^2}}}\)

    \(\therefore {\nabla ^2}\left[ {\log r} \right] = \frac{1}{{{r^2}}}\)

  • Question 3
    1 / -0

    Consider an incompressible flow velocity given as

    \(\vec V = \left( {2x + 3y + 4z} \right)\hat i + \left( {5x + cy + 6z} \right)\hat j + \left( {8x + 9y} \right)\hat k\) 

    The value of constant C is-
    Solution

    Calculation:

    For an Incompressible flow, div \(\vec V = 0\)

    \(div\;\left( {\vec V} \right) = \vec \nabla \cdot \vec V = \frac{\partial }{{\partial x}}\left( {2x + 3y + 4z} \right) + \frac{{\partial \left( {5x + cy + 6z} \right)}}{{\partial y}} + \frac{\partial }{{\partial z}}\left( {8x + 9y} \right){\rm{\;}} = {\rm{\;}}2{\rm{\;}} + {\rm{\;C}}\)

    For incompressible flow, \(\vec \nabla \cdot \vec V = 0\)

    ⇒ 2 + C = 0 ⇒ C = -2

  • Question 4
    1 / -0
    Let \(\vec a = \lambda \hat i - 9\hat j - \hat k,\;\vec b = 3\hat i + 3\hat j + \hat k\;and\;\vec c = 4\hat i + 2\hat j + \hat k\). The value of λ for which the vector \(\vec a\) is perpendicular to \(\vec b \times {\rm{\;}}\vec c\) is ________.
    Solution

    Concept:

    If \(\vec a\) and \(\vec b\) are two vectors given in the component form as \(\vec a = {a_1}\hat i + {b_1}\hat j + {c_1}\hat k,\;and\;\vec b = {a_2}\hat i + {b_2}\hat j + {c_2}\hat k\). Then, their cross or vector product is,

    \(\vec a \times {\rm{\;}}\vec b = \left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\end{array}} \right|\)

    If \(\vec a\) and \(\vec b\) are two vectors given in the component form as \(\vec a = {a_1}\hat i + {b_1}\hat j + {c_1}\hat k,\;and\;\vec b = {a_2}\hat i + {b_2}\hat j + {c_2}\hat k\). Then, both are perpendicular if their dot product is zero.

    Calculation:

    \(\vec a = \lambda \hat i - 9\hat j - \hat k,\;\vec b = 3\hat i + 3\hat j + \hat k\;and\;\vec c = 4\hat i + 2\hat j + \hat k\)

    \(\vec b \times {\rm{\;}}\vec c = \left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\3&3&1\\4&2&1\end{array}} \right|\)

    \(= \hat i\left( {3 - 2} \right) - \hat j\left( {3 - 4} \right) + \hat k\left( {6 - 12} \right)\)

    \(= \hat i + \hat j - 6\hat k\)

    vector \(\vec a\) is perpendicular to \(\vec b \times {\rm{\;}}\vec c\)

    \(\Rightarrow \vec a.\left( {\vec b \times {\rm{\;}}\vec c} \right) = 0\)

    \(\Rightarrow \left( {\lambda \hat i - 9\hat j - \hat k} \right).\left( {\hat i + \hat j - 6\hat k} \right) = 0\)

    ⇒ λ – 9 + 6 = 0

    ⇒ λ = 3
  • Question 5
    1 / -0
    The value of \(\mathop \smallint \limits_C \left[ {\left( {2{x^2} - y} \right)dx + 3x{y^2}dy} \right]\) and C is the curve x2 = 4y and y2 = 4x is _____.
    Solution

    Explanation:

    Given:

    curves x2 = 4y and y2 = 4x

    Substituting y = x2/4 in the second curve to obtain the point of intersection, we get:

    x = 4 and y = 4

    The given integral is in the form of M dx + N dy

    By using Green’s theorem,

    \(\mathop \smallint \limits_C Mdx + Ndy = \mathop \int\!\!\!\int \limits_R \left( {\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}}} \right)dx\;dy\)

    \(M = 2{x^2} - y \Rightarrow \frac{{\partial M}}{{\partial y}} = - 1\)

    \(N = 3x{y^2} \Rightarrow \frac{{\partial N}}{{\partial x}} = 3{y^2}\)

    \(= \int\!\!\!\int \left( {3{y^2} + 1} \right)dy\;dx\)

    \(= \mathop \smallint \limits_0^4 \mathop \smallint \limits_{y = \frac{{{x^2}}}{4}}^{2\sqrt x } \left( {3{y^2} + 1} \right)dy\;dx\)

    \(= \mathop \smallint \limits_0^4 \left[ {{y^3} + y} \right]_{\frac{{{x^2}}}{4}}^{2\sqrt x }dx\)

    \(= \mathop \smallint \limits_0^4 \left[ {8x\sqrt x + 2\sqrt x - \frac{{{x^6}}}{{64}} - \frac{{{x^2}}}{4}} \right]dx\)

    \(= \left[ {\frac{{8{x^{\frac{3}{2} + 1}}}}{{\frac{3}{2} + 1}} + \frac{{2{x^{\frac{1}{2} + 1}}}}{{\frac{1}{2} + 1}} - \frac{{{x^7}}}{{7\left( {64} \right)}} - \frac{{{x^3}}}{{3\left( 4 \right)}}} \right]_0^4\)

    \(= 8\left( {\frac{2}{5}} \right){x^{\frac{5}{2}}} + \frac{4}{3}{x^{\frac{3}{2}}} - \frac{{{x^7}}}{{7\left( {64} \right)}} - \frac{{{x^3}}}{{12}}\)

    \(= \frac{{16}}{5}\left( {32} \right) + \frac{4}{3}\left( 8 \right) - \frac{{{4^7}}}{{7 \times 64}} - \frac{{{4^3}}}{{12}}\)

    = 71.16
  • Question 6
    1 / -0
    The circulation of A̅ = yî + zĵ + xk̂ around the circle x2 + y2 = 1, z = 0 is
    Solution

    Explanation:

    \(\oint \bar A \cdot d\bar r = \mathop \smallint \nolimits_C \left( {ydx + zdy + xdz} \right)\)

    But, z = 0    ∴ dz = 0

    \(\therefore \oint \bar A \cdot d\bar r = \mathop \smallint \nolimits_C \left( {ydx} \right)\)

    Along circle, x2 + y2 = 1

    Put, x = cost y = sin t

    Now,

    dx = - sin t dt dy = cos t dt

    And t varies from 0 to 2π

    \(\mathop \oint \nolimits_c \bar A \cdot d\bar r = \mathop \smallint \limits_{t = 0}^{t = 2\pi } \sin t\left( { - \sin t} \right)\)

    \(\mathop \oint \nolimits_c \bar A \cdot d\bar r = - \mathop \smallint \limits_0^{2\pi } \left[ {\frac{{1 - \cos 2t}}{2}} \right]dt\)

    \(\mathop \oint \nolimits_c \bar A \cdot d\bar r = - \left[ {\frac{x}{2}\;\frac{{ - \sin 2t}}{4}} \right]_0^{2\pi }\)

    ∴ A̅ ⋅ dr̅ = - π 
  • Question 7
    1 / -0
    If f = x2yz and g = xy – 3z2, then the value ∇ ⋅ (∇f × ∇g) of (1, -1, 2) is ______ 
    Solution

    Explanation:

    ∇ ⋅ (∇f × ∇g) = ∇g ⋅ curl (∇f) - ∇f ⋅ [curl (∇g)]

    [∵ div (A̅ × B̅) = B̅ ⋅ curl A̅ - A̅ ⋅ curl B̅]

    We have, curl (grad ϕ) = 0̅    

    ∴ ∇ ⋅ (∇f × ∇g) = ∇g ⋅ 0̅ - ∇f ⋅ 0̅

    ∴ ∇ ⋅ (∇f × ∇g) = 0
  • Question 8
    1 / -0
    The vector \(\vec V = \left( {x + y + az} \right)i + \left( {bx + 2y - z} \right)j + + \left( { - x + cy + 2z} \right)k\) is irrotational. Where a, b and c are constants. Find the divergence of the vector \(\vec V\).
    Solution

    Concept:

    A vector F is said to be solenoidal when ∇. F = 0

    A vector F is said to be irrotational when ∇ × F = 0

    Calculation:

    \(\vec V = \left( {x + y + az} \right)i + \left( {bx + 2y - z} \right)j + + \left( { - x + cy + 2z} \right)k\)

    \(\nabla \times \vec V = \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {\left( {x + y + az} \right)}&{\left( {bx + 2y - z} \right)}&{\left( { - x + cy + 2z} \right)} \end{array}} \right| = 0\)

    ⇒ i (c + 1) – j (-1 – a) + k (b – 1) = 0

    ⇒ a = -1, b = 1, and c = -1

    \(\vec V = \left( {x + y - z} \right)i + \left( {x + 2y - z} \right)j + \left( { - x - y + 2z} \right)k\)

    Divergence of the given vector is

    \(div\;\vec V = \nabla .\vec V = \frac{\partial }{{\partial x}}\left( {x + y - z} \right) + \frac{\partial }{{\partial y}}\left( {x + 2y - z} \right) + \frac{\partial }{{\partial z}}\left( { - x - y + 2z} \right)\)

    = 1 + 2 + 2 = 5
  • Question 9
    1 / -0
    The directional derivative of ϕ = x2yz + 4 xz2 at (1, -2, -1) in the direction 2î - ĵ - 2k [upto 2 decimals]
    Solution

    Explanation:

    Gradient of scalar gives the vector

    ∇ϕ = ∇(x2yz + 4xz2)

    = (2xyz + 4z2) î + x2zĵ + (x2y + 8xz) k̂

    At, (1, -2, -1)

    = 8 î - ĵ - 10 k̂

    Unit vector in the direction of 2c – ĵ - 2k̂ is

    \(a = \frac{{2\hat i - \hat j - 2\hat k}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{2}{3}\hat i - \frac{1}{3}\hat j\frac{{ - 2}}{3}\hat k\)

    Required directional derivative.

    \(\frac{{\nabla\phi }}{{\left| {\nabla\phi } \right|}}.\hat a\)

    \(= \left( {8\;\hat i - \hat j - 10\;\hat k} \right)\left( {\frac{2}{3}\hat i - \frac{1}{3}\hat j\frac{{ - 2}}{3}\hat k} \right)\)

    \(= \frac{{16}}{3} + \frac{1}{3} + \frac{{20}}{3} = \frac{{37}}{3} = 12.33\)

  • Question 10
    1 / -0

    If F = 3y î – xz ​ĵ + yz2 k̂ and S is the surface of the paraboloid 2z = x2 + y2 bounded by z = 8, evaluate \(\mathop \int\!\!\!\int \limits_s^\; \left( {\nabla \times F} \right).ds\)

    Solution

    Explanation:

    By Stokes theorem

    \(\begin{array}{l} I = \mathop \int\!\!\!\int \limits_s^\; \left( {\nabla \times F} \right).ds = \mathop \oint \limits_C^\; F.dr\\ I = \mathop \oint \limits_C^\; F.dr = \mathop \oint \limits_C^\; \left( {3y\hat i - xz\hat j + y{z^2}\hat k} \right).\left( {dx\hat i + dy\hat j + dz\hat k} \right)\\ = \mathop \oint \limits_C^\; 3ydx - xzdy + y{z^2}dz \end{array}\)

    S ≡ x2 + y2 = 16, z = 8

    Let x = 4 cos θ, y = 4sin θ

    C ≡ x2 + y2 = 16, θ = 0 to 2π

    \(\begin{array}{l} I = \mathop \smallint \limits_0^{2\pi } 12\sin \theta \left( { - 4\sin \theta } \right)d\theta - 32\cos \theta \left( {4\cos \theta } \right)d\theta + 256\sin \theta \left( 0 \right)\\ = - 4\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {48{{\sin }^2}\theta + 128{{\cos }^2}\theta } \right)d\theta \\ = - 4\left( {48 \times \frac{1}{2} \times \frac{\pi }{2} + 128 \times \frac{1}{2} \times \frac{\pi }{2}} \right) \end{array}\)

    = -176 π

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now