Explanation:
Given:
curves x2 = 4y and y2 = 4x
Substituting y = x2/4 in the second curve to obtain the point of intersection, we get:
x = 4 and y = 4
The given integral is in the form of M dx + N dy
By using Green’s theorem,
\(\mathop \smallint \limits_C Mdx + Ndy = \mathop \int\!\!\!\int \limits_R \left( {\frac{{\partial N}}{{\partial x}} - \frac{{\partial M}}{{\partial y}}} \right)dx\;dy\)
\(M = 2{x^2} - y \Rightarrow \frac{{\partial M}}{{\partial y}} = - 1\)
\(N = 3x{y^2} \Rightarrow \frac{{\partial N}}{{\partial x}} = 3{y^2}\)
\(= \int\!\!\!\int \left( {3{y^2} + 1} \right)dy\;dx\)
\(= \mathop \smallint \limits_0^4 \mathop \smallint \limits_{y = \frac{{{x^2}}}{4}}^{2\sqrt x } \left( {3{y^2} + 1} \right)dy\;dx\)
\(= \mathop \smallint \limits_0^4 \left[ {{y^3} + y} \right]_{\frac{{{x^2}}}{4}}^{2\sqrt x }dx\)
\(= \mathop \smallint \limits_0^4 \left[ {8x\sqrt x + 2\sqrt x - \frac{{{x^6}}}{{64}} - \frac{{{x^2}}}{4}} \right]dx\)
\(= \left[ {\frac{{8{x^{\frac{3}{2} + 1}}}}{{\frac{3}{2} + 1}} + \frac{{2{x^{\frac{1}{2} + 1}}}}{{\frac{1}{2} + 1}} - \frac{{{x^7}}}{{7\left( {64} \right)}} - \frac{{{x^3}}}{{3\left( 4 \right)}}} \right]_0^4\)
\(= 8\left( {\frac{2}{5}} \right){x^{\frac{5}{2}}} + \frac{4}{3}{x^{\frac{3}{2}}} - \frac{{{x^7}}}{{7\left( {64} \right)}} - \frac{{{x^3}}}{{12}}\)
\(= \frac{{16}}{5}\left( {32} \right) + \frac{4}{3}\left( 8 \right) - \frac{{{4^7}}}{{7 \times 64}} - \frac{{{4^3}}}{{12}}\)
= 71.16