Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 5

Result Self Studies

Engineering Mathematics Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The Fourier series for an even function f(x) is given by

    Solution

    The Fourier series for the function f(x) in the interval α < x < α + 2π is given by

    \(f\left( x \right) = \frac{{{a_o}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos nx + \mathop \sum \limits_{n = 1}^\infty {b_n}\sin nx\)

    where

    \({a_o} = \frac{1}{\pi }\mathop \smallint \limits_\alpha ^{\alpha + 2\pi } f\left( x \right)dx;\;{a_n} = \frac{1}{\pi }\mathop \smallint \limits_\alpha ^{\alpha + 2\pi } f\left( x \right)\cos nxdx;\;{b_n} = \frac{1}{\pi }\mathop \smallint \limits_\alpha ^{\alpha + 2\pi } f\left( x \right)\sin nxdx\)

    An even function is any function f such that f(-x) = f(x)

    Example: cos x, sec x, x2, x4, x6 …….., x-2, x-4 ……..

    An odd function is any function f such that f(-x) = -f(x)

    Example: sin x, tan x, cosec x, cot x, n, x3 ……., x-1, x-3 ……..

    \(\mathop \smallint \limits_{ - L}^L f\left( x \right)dx = \left\{ {\begin{array}{*{20}{c}} {2\mathop \smallint \limits_0^L f\left( x \right)dx,\;\;when\;f\left( x \right)\;is\;an\;even\;function}\\ {0,\;\;when\;f\left( x \right)\;is\;an\;odd\;function} \end{array}} \right.\)

    When f is an even periodic function of period 2L, then its Fourier series contains only cosine (include possibly, the constant term) terms.

    \(f\left( x \right) = \frac{{{a_o}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\frac{{\cos n\pi x}}{L}\)

    \({a_o} = \frac{1}{L}\mathop \smallint \limits_{ - L}^L f\left( x \right)dx = \frac{2}{L}\mathop \smallint \limits_0^L f\left( x \right)dx\)

    \({a_n} = \frac{1}{L}\mathop \smallint \limits_{ - L}^L f\left( x \right)\cos \frac{{n\pi x}}{L}dx = \frac{2}{L}\mathop \smallint \limits_0^L f\left( x \right)\cos \frac{{n\pi x}}{L}dx\)

    When f is an odd periodic function of period 2L, then its Fourier series contains only sine terms.

    \(f\left( x \right) = \mathop \sum \limits_{n = 1}^\infty {b_n}\sin \frac{{n\pi x}}{L}\)

    \({b_n} = \frac{1}{L}\mathop \smallint \limits_{ - L}^L f\left( x \right)\sin \frac{{n\pi x}}{L}dx = \frac{2}{L}\mathop \smallint \limits_0^L f\left( x \right)\sin \frac{{n\pi x}}{L}dx\)

  • Question 2
    1 / -0
    Find the coefficient of x2 in expansion of e2x about 0
    Solution

    Concept:

    Taylor expansion About 0 = Maclaurin series

    f(x) = f(0) + xf’(0) + x2/2! f’’(0) +  …

    Calculation:

    To find f’’(0) /2!

    f(x) = e2x

    f’(x) = 2e2x

    f’’(x) = 22e2x

    f’’(0) = 4

    ∴ f’’(0)/2 = 2
  • Question 3
    1 / -0

    Calculate the coefficient a0 of Fourier series for

    \(f\left( t \right) = \left\{ {\begin{array}{*{20}{c}}{{t^2},\;0 \le t \le 2}\\{ - t + 6,\;2 \le t \le 6}\end{array}} \right.\)
    Solution

    Concept:

    Fourier series of f(x)

    \(f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos \frac{{n\pi x}}{L} + \mathop \sum \limits_{n = 1}^\infty {b_n}\sin \frac{{n\pi x}}{L}\)

    \({a_0} = \frac{1}{l}\;\mathop \smallint \limits_0^{2l} f\left( x \right)dx\)

    Calculation:

    \(L = 3,\;{a_0} = \frac{1}{3}\mathop \smallint \limits_0^6 f\left( x \right)dx\)

    \({a_0} = \frac{1}{3}\left[ {\mathop \smallint \limits_0^2 {x^2}dx + \mathop \smallint \limits_2^6 \left( {6 - x} \right)dx} \right]\)

    \({a_0} = \frac{1}{3}\left[ {\frac{8}{3} + 6\left( 4 \right) - \frac{1}{2}\left( {36 - 4} \right)} \right]\)

    \({a_0} = \frac{1}{3}\left[ {\frac{{32}}{3}} \right]\)

    \(\therefore {a_0} = \frac{{32}}{9}\)

  • Question 4
    1 / -0

    By using a suitable Maclaurin series, find the sum to infinity of the following infinite series

    \(\pi - \frac{{{\pi ^3}}}{{3!}} + \frac{{{\pi ^5}}}{{5!}} - \frac{{{\pi ^7}}}{{7!}} + \ldots \;\)

    Solution

    Explanation:

    Expansion of some important function:

    \(\sin \theta = \theta - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^5}}}{{5!}} - \frac{{{\theta ^7}}}{{7!}} + \ldots \)

    \(\cos \theta = 1 - \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta ^4}}}{{4!}} - \frac{{{\theta ^6}}}{{6!}} + \ldots \)

    \(\tan \theta = \theta + \frac{{{\theta ^3}}}{2} + \frac{{{{2\theta}^5}}}{{15}} + \ldots \)

    \({e^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \ldots \)

    The given series is

    \(\pi - \frac{{{\pi ^3}}}{{3!}} + \frac{{{\pi ^5}}}{{5!}} - \frac{{{\pi ^7}}}{{7!}} + \ldots = \sin \pi = 0\)

  • Question 5
    1 / -0

    For the function f(x) = x3 – 10x2 + 6, the linear approximation around x = 3 is

    Solution

    Concept:

    Taylor series expansion

    \(f\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + \frac{{f'\left( a \right)}}{2}{\left( {x - a} \right)^2} + \frac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots \)

    Calculation:

    Here a = 3

    \(f\left( x \right) = f\left( 3 \right) + f'\left( 3 \right)\left( {x - 3} \right) + \frac{{f'\left( 3 \right)}}{2}{\left( {x - 3} \right)^2} + \frac{{f'''\left( 3 \right)}}{{3!}}{\left( {x - 3} \right)^3} + \ldots \)

    For linear approximation, take only first two terms

    f(x) = f(3) + f’(3) (x-3)

    f(x) = x3 - 10x2+6, f(3) = -57

    f’(x) = 3x2 - 20x, f’(3) = -33

    ∴ f(x) = -57 - 33(x-3) = 42 - 33x = 3(14 - 11x)

  • Question 6
    1 / -0
    1 + x + x2/2 – x4/8 – x5/15 + … =
    Solution

    Explanation:

    Try to solve options.

    Let us take option 3

    Then we can say f(x) = esin x

    F(0) = 1

    f’(x) = esin x cos x

    f’(0) = 1

    f”(x) = esin x cos2 x – esin x sin x

    f”(0) = 1

    Similarly f’’’ (0) = 0

    fiv (0) = -3

    Now from Maclaurin’s series of expansion –

    \(f\left( x \right)=f\left( 0 \right)+\frac{x}{1!}~{f}'\left( 0 \right)+\frac{{{x}^{2}}}{2!}~{f}''\left( 0 \right)+\frac{{{x}^{3}}}{3!}~{f}'''\left( 0 \right)+\frac{{{x}^{4}}}{4!}f'''\left( 0 \right)\)

    \(=1+x\cdot 1+\frac{{{x}^{2}}}{2!}~\left( 1 \right)+\frac{{{x}^{3}}}{3!}~\left( 0 \right)+\frac{{{x}^{4}}}{4!}\left( -3 \right)\)

    \(=1+x+\frac{{{x}^{2}}}{2}-\frac{{{x}^{4}}}{8}\)
  • Question 7
    1 / -0
    In the Taylor series expansion of ex + sin x about the point x = π, the coefficient of (x – π)2 is
    Solution

    Concept:

    Taylor’s series expansion is given by,

    \(f\left( x \right) = f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + \frac{{f''\left( {{x_0}} \right)}}{{2!}}{\left( {x - {x_0}} \right)^2}\)

    Calculation:

    f(x) = ex + sin x, f(π) = eπ

    f’(x) = ex + cos x, f’(π) = eπ – 1

    f’’(π) = ex – sin x, f’’(π) = eπ

    \(f\left( \pi \right) = {e^\pi } + \left( {{e^\pi } - 1} \right)\left( {x - \pi } \right) + \frac{{{e^\pi }}}{{2!}}{\left( {x - \pi } \right)^2} + \ldots \)

    The coefficient of (x – π)2 = 0.5 eπ
  • Question 8
    1 / -0

    The Fourier series to represent x-x2 for –π ≤ x ≤ π is given by \(x - {x^2} = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}cosnx + \mathop \sum \limits_{n = 1}^\infty {b_n}sinnx\)

    The value of a0 (round off to two decimal places), is
    Solution

    Concept:

    In the interval (-l, l) Fourier series is defined as:-

    \(f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos \frac{{n\pi x}}{l} + \mathop \sum \limits_{n = 1}^\infty {b_n}\sin \frac{{n\pi x}}{l}\)

    Where, \({a_0} = \frac{1}{l}\mathop \smallint \nolimits_{ - l}^l f\left( x \right)dx\)

    \({a_n} = \frac{1}{l}\mathop \smallint \nolimits_{ - l}^l f\left( x \right)\cos \frac{{n\pi x}}{l}dx\)

    \({b_n} = \frac{1}{l}\mathop \smallint \nolimits_{ - l}^l f\left( x \right)\frac{{\sin n\pi x}}{l}dx\)

    Euler Definition: In the interval (-π, π)

    \(f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos nx + \mathop \sum \limits_{n = 1}^\infty {b_n}\sin x\)

    Where,

    \({a_o} = \frac{1}{\pi }\mathop \smallint \nolimits_{ - \pi }^\pi f\left( x \right)dx\)

    \({a_n} = \frac{1}{\pi }\mathop \smallint \nolimits_{ - \pi }^\pi f\left( x \right)\cos nx\;dx\)

    \({b_n} = \frac{1}{\pi }\mathop \smallint \nolimits_{ - \pi }^\pi f\left( x \right)\sin nx\;dx\)

    Calculation:

    f(x) = (x – x2)

    \(\therefore {a_0} = \frac{1}{l}\mathop \smallint \nolimits_{ - l}^l f\left( x \right)dx = \frac{1}{\pi }\mathop \smallint \nolimits_{ - \pi }^\pi \left( {x - {x^2}} \right)dx = \frac{1}{\pi }\left[ {\frac{{{x^2}}}{2} - \frac{{{x^3}}}{3}} \right]_{ - \pi }^\pi \)

    = -6.5797
  • Question 9
    1 / -0
    Which of the following is the correct expansion of x2 + e2x about 1?
    Solution

    Concept:

    Taylor expansion about a:

    \(f\left( {a + x} \right) = f\left( a \right) + xf'\left( a \right) + \frac{{{x^2}}}{{2!}}f''\left( a \right) + \ldots + \frac{{{x^n}}}{{n!}}{f^n}\left( a \right)\)

    Calculation:

    f(x) = x2 + e2x

    f(1) = 1 + e2

    f’(x) = 2x + 2e2x ⇒ f’(1) = 2 + 2e2

    f’’(x) = 2 + 22 e2x ⇒ f’’(1) = 2 + 22 e2

    f’’’(x) = 23 e2x ⇒ f’’’(1) = 23e2

    \(\therefore f\left( x \right) = \left( {1 + {e^2}} \right) + x\left( {2 + 2{e^2}} \right) + \frac{{{x^2}}}{{2!}}\left( {2 + 4{e^2}} \right) + \frac{{{x^3}}}{{3!}}\left( {8{e^3}} \right) + \ldots \)

    \(\therefore f\left( x \right) = 1 + {e^2} + 2x + 2x{e^2} + \frac{{2{x^2}}}{2} + 2{x^2}{e^2} + \frac{4}{3}{x^3}{e^2} + \ldots \)

    \(\therefore f\left( x \right) = \left( {1 + {e^2}} \right)\left( {1 + x} \right) + {x^2}\left( {1 + 2{e^2}} \right) + \frac{{4{x^3}}}{3}{e^2} + \ldots \)

  • Question 10
    1 / -0

    The Fourier Sine series for an odd function f(x) is given by

    \(f\left( x \right) = \mathop \sum \limits_{n = 1}^\infty {b_n}\sin \frac{{n\pi x}}{L}\)

    The value of the coefficient b2 for the function \(f(x) = \sin ax,\,\, - \pi < x < \pi \) is

    Solution

    Explanation:

    When f is an even periodic function of period 2L, then its Fourier series contains only cosine (include possibly, the constant term) terms.

    \(f\left( x \right) = \frac{{{a_o}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\frac{{\cos n\pi x}}{L}\)

    When f is an odd periodic function of period 2L, then its Fourier series contains only sine terms.

    \(f\left( x \right) = \mathop \sum \limits_{n = 1}^\infty {b_n}\sin \frac{{n\pi x}}{L}\)

    \(\begin{array}{l} {b_n} = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi f\left( x \right)\sin nx\,dx\\ = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi \sin ax\,\sin nx\,dx = \frac{2}{\pi }\mathop \smallint \limits_0^\pi \sin ax\,\sin nx\,dx = \frac{1}{\pi }\mathop \smallint \limits_0^\pi 2\sin ax\,\sin nx\,dx\\ = \frac{1}{\pi }\mathop \smallint \limits_0^\pi [\cos (n - a)x - \cos (n + a)]dx = \frac{1}{\pi }\mathop \smallint \limits_0^\pi [\cos (n - a)x - \cos (n + a)]dx\\ = \frac{1}{\pi }\left[ {\frac{{\sin (n - a)x}}{{(n - a)}} - \frac{{\sin (n + a)x}}{{(n + a)}}} \right]_0^\pi = \frac{1}{\pi }\left[ {\frac{{\sin (n - a)\pi }}{{(n - a)}} - \frac{{\sin (n + a)\pi }}{{(n + a)}}} \right]\\ \end{array}\)

    \(= \frac{1}{\pi }\left[ {\frac{{\sin (n\pi - a\pi )}}{{(n - a)}} - \frac{{\sin (n\pi + a\pi )}}{{(n + a)}}} \right] = \frac{1}{\pi }\left[ {\frac{{{{( - 1)}^n}( - \sin a\pi )}}{{(n - a)}} - \frac{{{{( - 1)}^n}\sin a\pi }}{{(n + a)}}} \right]\\ = - \frac{{{{( - 1)}^n}\sin a\pi }}{\pi }\left[ {\frac{1}{{(n - a)}} + \frac{1}{{(n + a)}}} \right]\\ {b_n} = - \frac{{{{( - 1)}^n}2n.\sin a\pi }}{{\pi ({n^2} - {a^2})}} = \frac{{{{( - 1)}^{n + 1}}2n.\sin a\pi }}{{\pi ({n^2} - {a^2})}}\\ {b_2} = \frac{{{{( - 1)}^3}2(2).\sin a\pi }}{{\pi ({2^2} - {a^2})}} = - \frac{{4\sin a\pi }}{{\pi ({2^2} - {a^2})}}\\ f(x) = \sin ax = \mathop \sum \limits_{n = 1}^\infty {b_n}\sin nx\\ = \frac{{2\sin a\pi }}{\pi }\mathop \sum \limits_{n = 1}^\infty \frac{{{{( - 1)}^{n + 1}}n}}{{({n^2} - {a^2})}}\sin nx\\ f(x) = \frac{{2\sin a\pi }}{\pi }\left[ {\frac{{\sin x}}{{({1^2} - {a^2})}} - \frac{{2\sin 2x}}{{({2^2} - {a^2})}} + \frac{{3\sin 3x}}{{({3^2} - {a^2})}} - ...} \right]\\ \& \,{b_2} = - \frac{{4\sin a\pi }}{{\pi ({2^2} - {a^2})}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now