Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    If \({\rm{\vec F}} = {\rm{x\;\vec i}} + {\rm{y\;\vec j}} + {\rm{z\;\vec k}}\) and s is the closed surface of x2 + y2 + z2 = a2. Then \(\mathop \int\!\!\!\int \nolimits_{\rm{s}}^{} {\rm{\vec F}} \cdot {\rm{\hat n\;ds}}\) is

  • Question 2
    1 / -0

    If S be any closed surface, evaluate \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec {ds}\)

  • Question 3
    1 / -0

    Evaluate the integral \(I = \mathop \oint \limits_c \left( {{e^x}dx + 2ydy - dz} \right)\) over the curve C: x2 + y2 = 4, z = 2

  • Question 4
    1 / -0

    The value of the line integral \(\frac{2}{\pi }\mathop \oint \limits_\gamma \left( { - {y^3}dx + {x^3}dy} \right)\), where γ is the circle x2 + y2 = 1 oriented counter clockwise, is ________.

  • Question 5
    1 / -0

    Evaluate the line integral of \(\vec F = \left( {x + y} \right)\hat i + \left( {2x - z} \right)\hat j + \left( {y + 2} \right)\hat k\) along the boundary of triangle whose vertices are (2, 0, 0), (0, 3, 0) and (0, 0, 6)

    Use area of triangle \(= 3\sqrt {14}\)

  • Question 6
    1 / -0

    Evaluate the line integral of vector field F = sin y î + x (1 + cos x) ĵ along the circular path given by x2 + y2 = a2, z = 0

    (Use a = 5 and round-off to two decimals)

  • Question 7
    1 / -0

    Find the value of work done on a semi sphere \({x^2} + {y^2} + {z^2} = 4\) bounded by a curve C, given that \(F = {x^2}i + \left( {{y^2} + x} \right)j + \left( {{z^2}} \right)k\)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 7

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now