Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 8

Result Self Studies

Engineering Mathematics Test 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The partial differential equation \(\frac{{{\partial ^2}u}}{{\partial {t^2}}} - {c^2}\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}} \right) = 0\); where c ≠ 0 is known as
    Solution

    3-D heat equation is given as below

    \(\left( {\frac{{{\partial ^2}T}}{{d{x^2}}} + \frac{{{\partial ^2}T}}{{\partial {y^2}}} + \frac{{{\partial ^2}T}}{{\partial {z^2}}}} \right) + \frac{{Q\left( {x,t} \right)}}{K} = \frac{1}{\alpha }\frac{{\partial T}}{{\partial t}}\)

    For 1 – D & without heat generation:

    \(\frac{{{\partial ^2}T}}{{\partial {x^2}}} = \frac{1}{\alpha }\frac{{\partial T}}{{\partial t}}\)

    Where α ÷ thermal diffusivity.

    Wave equation is given by:

    \(\frac{{{\partial ^2}u}}{{\partial {t^2}}} = {c^2}\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}} \right)\)      (2-D)

    Laplace equation:

    \(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}} + \frac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\)     (3-D)

    \({\nabla ^2}u = 0\)

    Poisson’s equation: 

    \({\nabla ^2}V = - \frac{{{\rho _v}}}{\epsilon}\)

  • Question 2
    1 / -0
    Determine xzx + yzy for the function \(z = {\sin ^{ - 1}}\left( {\frac{{{x^3} + {y^3}}}{{x - y}}} \right)\)
    Solution

    Concept:

    Euler’s theorem for homogenous function

    Case 1: If z = f(x,y) is homogenous function of degree ‘n’ in x and y then according to euler’s theorem,

    • xzx + yzy = nz
    • x2zxx + 2xyzxy + y2zyy = n(n – 1)z

    Case 2: If z = f(x,y) is non-homogenous function however, u = g(z) is homogenous function of degree ‘n’ in x and y then according to euler’s theorem,

    • \(xz_x\; + \;yz_y\; = \frac{{ng\left( z \right)}}{{g'\left( z \right)}} = E\left( z \right)\)
    • x2zxx + 2xyzxy + y2zyy = E(z)[E’(z) – 1]

    Calculation:

    Given:

    \(z = {\sin ^{ - 1}}\left( {\frac{{{x^3} + {y^3}}}{{x - y}}} \right)\)

    As z is non-homogenous function, however, u = g(z) = sin z is homogenous function of degree 2 in x and y respectively.

    \(xz_x\; + \;yz_y\; = \frac{{ng\left( z \right)}}{{g'\left( z \right)}} = E\left( z \right)\)

    \(x{z_x} + \;y{z_y} = \frac{{2\sin z}}{{\cos z}} = 2\tan z\)

  • Question 3
    1 / -0
    Find the Laplace transform of y(t) = te-5t
    Solution

    Concept:

    If F(s) is the Laplace transform of f(t),

    By using the first shifting rule

    L [eatf(t)] = F (s – a)

    Application:

    y(t) = te-5t

    L(t) = 1/s2

    L [y(t)] = L (te-5t)

    \(L\left( {t{e^{ - 5t}}} \right) = \frac{1}{{{{\left( {s + 5} \right)}^2}}}\)

  • Question 4
    1 / -0
    General solution of the Cauchy-Euler equation \({x^2}\frac{{{d^2}y}}{{d{x^2}}} - 7x\frac{{dy}}{{dx}} + 16y = 0\) is
    Solution

    Concept:

    For different roots of the auxiliary equation, the solution (complementary function) of the differential equation is as shown below.

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    \({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m3, … (two real and equal roots)

    \(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m1, m4… (three real and equal roots)

    \(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    \({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    \({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

     

    Calculation:

    \({x^2}\frac{{{d^2}y}}{{d{x^2}}} - 7x\frac{{dy}}{{dx}} + 16y = 0\)

    Put x = et

    ⇒ t = ln x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Now, the above differential equation becomes

    D (D – 1) y – 7 D y + 16 y = 0

    ⇒ D2 y – D y – 7 D y + 16 y = 0

    ⇒ (D2 – 8 D + 16) y = 0

    Auxiliary equation:

    (D2 – 8 D + 16) = 0

    ⇒ D = 4

    The solutions for the above roots of auxiliary equations are:

    y(t) = (c1 + c2 t) e4t

    ⇒ y(x) = (c1 + c2 ln x) x4
  • Question 5
    1 / -0
    If \(u = {\tan ^{ - 1}}\left( {\frac{{{y^3} - {x^3}}}{{{x^2} + {y^2} + xy}}} \right)\) the value of \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}}\) at x = 1 and y = 3 is _____
    Solution

    Explanation:

    \(u = {\tan ^{ - 1}}\left( {\frac{{{y^3} - {x^3}}}{{{x^2} + {y^2} + xy}}} \right)\)

    \(\tan u = \frac{{{y^3} - {x^3}}}{{{x^2} + {y^2} + xy}} = \frac{{\left( {y - x} \right)\left( {{x^2} + {y^2} + xy} \right)}}{{\left( {{x^2} + {y^2} + xy} \right)}}\)

    Now,

    \(\tan u = y\left[ {1 - \left( {\frac{x}{y}} \right)} \right]\) is a homogeneous function of degree ‘1’

    \(\therefore x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = \frac{{n\;f\left(u \right)}}{{f'\left( u \right)}} = 1 \times \frac{{\tan u}}{{{{\sec }^2}u}}\)

    \(= \frac{{\tan u}}{{1 + {{\tan }^2}u}} = \frac{{\left( {y - x} \right)}}{{1 + {{\left( {y - x} \right)}^2}}}\)

    \(= \frac{{\left( {3 - 1} \right)}}{{1 + {{\left( {3 - 1} \right)}^2}}} = \frac{2}{5} = 0.4\)

  • Question 6
    1 / -0
    The solution of the differential equation \(y'' + y = t,y\left( 0 \right) = 1,y'\left( 0 \right) = - 2\) is
    Solution

    \(y'' + y = t\)

    By applying Laplace transform on both sides,

    \( \Rightarrow {s^2}Y\left( s \right) - sy\left( 0 \right) - y'\left( 0 \right) + Y\left( s \right) = \frac{1}{{{s^2}}}\)

    \(\Rightarrow {s^2}Y\left( s \right) - s + 2 + Y\left( s \right) = \frac{1}{{{s^2}}}\)

    \(\Rightarrow Y\left( s \right)\left( {1 + {s^2}} \right) = \frac{1}{{{s^2}}} + s - 2\)

    \(\Rightarrow Y\left( s \right) = \frac{1}{{{s^2}\left( {1 + {s^2}} \right)}} + \frac{s}{{\left( {1 + {s^2}} \right)}} - \frac{2}{{\left( {1 + {s^2}} \right)}}\)

    \(= \frac{1}{{{s^2}}} - \frac{1}{{\left( {1 + {s^2}} \right)}} + \frac{s}{{\left( {1 + {s^2}} \right)}} - \frac{2}{{\left( {1 + {s^2}} \right)}}\)

    \(\Rightarrow Y\left( s \right) = \frac{1}{{{s^2}}} - \frac{3}{{1 + {s^2}}} + \frac{s}{{1 + {s^2}}}\)

    By applying inverse Laplace transform,

    ⇒ y(t) = t – 3 sin t + cos t
  • Question 7
    1 / -0
    The solution of differential equation \(\frac{{dy}}{{dx}} + \frac{y}{x} = x,\) with condition that y = 1 at x = 1, is
    Solution

    Given:

    \(\frac{{dy}}{{dx}} + \frac{y}{x} = x\)

    Comparing with

    \(\frac{{dy}}{{dx}} + py = q\)

    We get,

    \(p = \frac{1}{x};q = x\)

    \(TF = {e^{\smallint pdx}} = {e^{\smallint \frac{1}{x}dx}} = {e^{\ln x}} = x\)

    Now,

    General solution can be written as,

    Y (IF) = ∫ q (IF) dxt C

    Y (x) = ∫ x (x) dxt C

    xy = ∫ x2 dx + C

    \(xy = \frac{{{x^3}}}{3} + C\)

    At, x = 1 & y  =1

    \(\left( 1 \right)\left( 1 \right) = \frac{{\left( 1 \right)}}{3} + C\)

    \(\therefore C = \frac{2}{3}\)

    \(\therefore xy = \frac{{{x^3}}}{3} + \frac{2}{3}\)

    \(\therefore y = \frac{{{x^2}}}{3} + \frac{2}{{3x}}\)

  • Question 8
    1 / -0

    Find the Laplace transform of \(\mathop \smallint \limits_0^\infty \frac{{{e^{ - at}} - {e^{ - bt}}}}{t}dt\)

    Solution

    Explanation:

    Let F(t) = e-at – e-bt

    {L{F(t)} = L{e-at – e-bt}

    \(= \frac{1}{{s + a}} - \frac{1}{{s - b}}\)

    Now \(L\left\{ {\frac{{{e^{ - at}} - {e^{ - bt}}}}{t}} \right\} = \mathop \smallint \limits_s^\infty \left( {\frac{1}{{\left( {s + a} \right)}} - \frac{1}{{\left( {s + b} \right)}}} \right)ds\)

    \( = \left[ {\log \left( {s - a} \right) - \log \left( {s + b} \right)} \right]_s^\infty \)

    \(= \left[ {\log \left( {\frac{{s + a}}{{s + b}}} \right)} \right]_s^\infty \)

    \( = \mathop {\lim }\limits_{s \to \infty } \log \left( {\frac{{s + a}}{{s + b}}} \right) - \log \left( {\frac{{s + a}}{{s + b}}} \right)\)

    \( = \mathop {\lim }\limits_{s \to \infty } \log \left( {\frac{{1 + a/s}}{{1 + b/s}}} \right) - \log \left[ {\frac{{s + a}}{{s + b}}} \right]\)

    \( = \log \left[ {\frac{{1 + 0}}{{1 + 0}}} \right] + \log {\left( {\frac{{s + a}}{{s + b}}} \right)^{ - 1}} = \log \left( {\frac{{s + b}}{{s + a}}} \right)\)

    ∵ By definition

    \(L\left\{ {F\left( t \right)} \right\} = \mathop \smallint \limits_o^\infty {e^{ - st}}.F\left( t \right)dt\)

    \(L\left[ {\frac{{{e^{ - at}} - {e^{ - bt}}}}{t}} \right] = \mathop \smallint \limits_0^\infty {e^{ - st}}\left[ {\frac{{{e^{ - at}} - {e^{ - bt}}}}{t}} \right]dt\)

    Put s = 0

    \(\mathop \smallint \limits_0^\infty \frac{{{e^{ - at}} - {e^{ - bt}}}}{t}dt = \log \frac{b}{a}\)

    Laplace transform of \(\mathop \smallint \limits_0^\infty \frac{{{e^{ - at}} - {e^{ - bt}}}}{t}dt\) = Laplace transform of \(\log \frac{b}{a}\)

    \( = \frac{1}{s}\log \frac{b}{a}\)

  • Question 9
    1 / -0
    What is the value of y(1) if y(0) = 4 and y’(0) = 9 for the differential equation y’’ + 4y’ + 4y = e2x
    Solution

    Concept:

    Write auxillary equation by replacing

    \(\frac{{{d^n}y}}{{d{x^n}}} = {m^n}\)

    Equate to 0 and solve for (m) (f(m) = 0)

    → for repeated roots m1 = m2 = m (real)

    Complementary function (CF)

    CF = (C1 + C2 x) emx

    → Particular integral (PI) when f(x) = eax

    \(PI = \frac{{{e^{ax}}}}{{f\left( m \right)}}\)

    Replace m by a

    Solution ⇒ y = CF + PI

    Calculation:

    m2 + 4m + 4 = 0

    (m + 2)2 = 0 ⇒ m = -2, -2

    C F = (C1 + C2 x) e-2x

    \(PI = \frac{{{e^{2x}}}}{{{m^2} + 4m + 4}} = \frac{{{e^{2x}}}}{{16}}\)

    ∴ y = (C1 + C2 x) e-2x + e2x / 16

    y(0) = 4 ⇒ 4 = C1 + 1 / 16 ⇒ C1 = 63 / 16

    y = (C1 + C2 x) e-2x + e2x / 16

    \(y'\left( x \right) = - 2\left( {{C_1} + {C_2}x} \right){e^{ - 2x}} + \frac{{2{e^{2x}}}}{{16}} + {C_2}{e^{ - 2x}}\)

    \(y'\left( 0 \right) = - 2{C_1} + \frac{2}{{16}} + {C_2}\) 

    \(9 = - 2 \times \frac{{63}}{{16}} + \frac{2}{{16}} + {C_2}\) 

    \({C_2} = 9 + \frac{{63}}{8} - \frac{1}{8} = 9 + \frac{{62}}{8}\) 

    C2 = 16.75

    C1 = 63 / 16 = 3.9375

    Now,

    \(y = \left( {3.9375 + 1675x} \right){e^{ - 2x}} + \frac{{{e^{2x}}}}{{16}}\) 

    \(\therefore y\left( 1 \right) = \frac{{\left( {3.9375 + 16.75} \right)}}{{{e^2}}} + \frac{{{e^2}}}{{16}}\)

    y(1) = 3.26 

  • Question 10
    1 / -0
    The complementary solution of the differential equation \({x^2}\frac{{{d^3}y}}{{d{x^3}}} - 4x\frac{{{d^2}y}}{{d{x^2}}} + 6\frac{{dy}}{{dx}} = 4\) is
    Solution

    Concept:

    Euler Cauchy Homogeneous linear equation:

    \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {c_1}{x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + ... + {c_{n - 1}}x\frac{{dy}}{{dx}} + {c_n}y = f(x)\)

    Take x = et ⇒ t = log x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Calculation:

    \({x^2}\frac{{{d^3}y}}{{d{x^3}}} - 4x\frac{{{d^2}y}}{{d{x^2}}} + 6\frac{{dy}}{{dx}} = 4\)

    By multiplying with ‘x’ on both sides

    \(\Rightarrow {x^3}\frac{{{d^3}y}}{{d{x^3}}} - 4{x^2}\frac{{{d^2}y}}{{d{x^2}}} + 6x\frac{{dy}}{{dx}} = 4x\)

    The given equations become,

    ⇒ [D (D – 1) (D – 2) – 4 D (D – 1) + 6D] y = 4x

    ⇒ (D3 – 3D2 + 2D – 4D2 + 4D + 6D) y = 4x

    ⇒ (D3 – 7D2 + 12D) y = 4x

    Auxiliary equation: D3 – 7D2 + 12D = 0

    ⇒ D (D2 – 7D + 12) = 0

    ⇒ D = 0, 3, 4

    Complementary solution (CF) = C1 + C2 e3t + C3 e4t

    CF = C1 + C2 x3 + C3x4  

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now