Concept:
Write auxillary equation by replacing
\(\frac{{{d^n}y}}{{d{x^n}}} = {m^n}\)
Equate to 0 and solve for (m) (f(m) = 0)
→ for repeated roots m1 = m2 = m (real)
Complementary function (CF)
CF = (C1 + C2 x) emx
→ Particular integral (PI) when f(x) = eax
\(PI = \frac{{{e^{ax}}}}{{f\left( m \right)}}\)
Replace m by a
Solution ⇒ y = CF + PI
Calculation:
m2 + 4m + 4 = 0
(m + 2)2 = 0 ⇒ m = -2, -2
C F = (C1 + C2 x) e-2x
\(PI = \frac{{{e^{2x}}}}{{{m^2} + 4m + 4}} = \frac{{{e^{2x}}}}{{16}}\)
∴ y = (C1 + C2 x) e-2x + e2x / 16
y(0) = 4 ⇒ 4 = C1 + 1 / 16 ⇒ C1 = 63 / 16
y = (C1 + C2 x) e-2x + e2x / 16
\(y'\left( x \right) = - 2\left( {{C_1} + {C_2}x} \right){e^{ - 2x}} + \frac{{2{e^{2x}}}}{{16}} + {C_2}{e^{ - 2x}}\)
\(y'\left( 0 \right) = - 2{C_1} + \frac{2}{{16}} + {C_2}\)
\(9 = - 2 \times \frac{{63}}{{16}} + \frac{2}{{16}} + {C_2}\)
\({C_2} = 9 + \frac{{63}}{8} - \frac{1}{8} = 9 + \frac{{62}}{8}\)
C2 = 16.75
C1 = 63 / 16 = 3.9375
Now,
\(y = \left( {3.9375 + 1675x} \right){e^{ - 2x}} + \frac{{{e^{2x}}}}{{16}}\)
\(\therefore y\left( 1 \right) = \frac{{\left( {3.9375 + 16.75} \right)}}{{{e^2}}} + \frac{{{e^2}}}{{16}}\)
∴ y(1) = 3.26